Espeseth Amy S, Cejas Pedro J, Citron Michael P, Wang Dai, DiStefano Daniel J, Callahan Cheryl, Donnell Gregory O', Galli Jennifer D, Swoyer Ryan, Touch Sinoeun, Wen Zhiyun, Antonello Joseph, Zhang Lan, Flynn Jessica A, Cox Kara S, Freed Daniel C, Vora Kalpit A, Bahl Kapil, Latham Andrew H, Smith Jeffrey S, Gindy Marian E, Ciaramella Giuseppe, Hazuda Daria, Shaw Christine A, Bett Andrew J
1ID/Vaccines Discovery, Merck & Co., Inc., Kenilworth, NJ USA.
2Pharmacology, Merck & Co., Inc., Kenilworth, NJ USA.
NPJ Vaccines. 2020 Feb 14;5(1):16. doi: 10.1038/s41541-020-0163-z. eCollection 2020.
The RSV Fusion (F) protein is a target for neutralizing antibody responses and is a focus for vaccine discovery; however, the process of RSV entry requires F to adopt a metastable prefusion form and transition to a more stable postfusion form, which displays less potent neutralizing epitopes. mRNA vaccines encode antigens that are translated by host cells following vaccination, which may allow conformational transitions similar to those observed during natural infection to occur. Here we evaluate a panel of chemically modified mRNA vaccines expressing different forms of the RSV F protein, including secreted, membrane associated, prefusion-stabilized, and non-stabilized structures, for conformation, immunogenicity, protection, and safety in rodent models. Vaccination with mRNA encoding native RSV F elicited antibody responses to both prefusion- and postfusion-specific epitopes, suggesting that this antigen may adopt both conformations in vivo. Incorporating prefusion stabilizing mutations further shifts the immune response toward prefusion-specific epitopes, but does not impact neutralizing antibody titer. mRNA vaccine candidates expressing either prefusion stabilized or native forms of RSV F protein elicit robust neutralizing antibody responses in both mice and cotton rats, similar to levels observed with a comparable dose of adjuvanted prefusion stabilized RSV F protein. In contrast to the protein subunit vaccine, mRNA-based vaccines elicited robust CD4+ and CD8+ T-cell responses in mice, highlighting a potential advantage of the technology for vaccines requiring a cellular immune response for efficacy.
呼吸道合胞病毒融合(F)蛋白是中和抗体反应的靶点,也是疫苗研发的重点;然而,呼吸道合胞病毒进入细胞的过程需要F蛋白采用亚稳态的预融合形式并转变为更稳定的融合后形式,而后者显示出较弱的中和表位。mRNA疫苗编码的抗原在接种后由宿主细胞翻译,这可能会使类似于自然感染期间观察到的构象转变发生。在这里,我们评估了一组表达不同形式呼吸道合胞病毒F蛋白的化学修饰mRNA疫苗,包括分泌型、膜相关型、预融合稳定型和非稳定型结构,以研究其在啮齿动物模型中的构象、免疫原性、保护作用和安全性。用编码天然呼吸道合胞病毒F蛋白的mRNA进行接种可引发针对预融合和融合后特异性表位的抗体反应,这表明该抗原在体内可能采用两种构象。引入预融合稳定突变进一步使免疫反应向预融合特异性表位偏移,但不影响中和抗体滴度。表达呼吸道合胞病毒F蛋白预融合稳定形式或天然形式的mRNA候选疫苗在小鼠和棉鼠中均引发了强大的中和抗体反应,类似于用同等剂量的佐剂预融合稳定呼吸道合胞病毒F蛋白所观察到的水平。与蛋白质亚单位疫苗不同,基于mRNA的疫苗在小鼠中引发了强大的CD4+和CD8+ T细胞反应,突出了该技术对于需要细胞免疫反应才能产生疗效的疫苗的潜在优势。