文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过自互补 AAV 递送系统增强 CRISPR-Cas9 对杜氏肌营养不良症小鼠的校正。

Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system.

机构信息

Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Sci Adv. 2020 Feb 19;6(8):eaay6812. doi: 10.1126/sciadv.aay6812. eCollection 2020 Feb.


DOI:10.1126/sciadv.aay6812
PMID:32128412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7030925/
Abstract

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the dystrophin gene (). Previously, we applied CRISPR-Cas9-mediated "single-cut" genome editing to correct diverse genetic mutations in animal models of DMD. However, high doses of adeno-associated virus (AAV) are required for efficient in vivo genome editing, posing challenges for clinical application. In this study, we packaged Cas9 nuclease in single-stranded AAV (ssAAV) and CRISPR single guide RNAs in self-complementary AAV (scAAV) and delivered this dual AAV system into a mouse model of DMD. The dose of scAAV required for efficient genome editing were at least 20-fold lower than with ssAAV. Mice receiving systemic treatment showed restoration of dystrophin expression and improved muscle contractility. These findings show that the efficiency of CRISPR-Cas9-mediated genome editing can be substantially improved by using the scAAV system. This represents an important advancement toward therapeutic translation of genome editing for DMD.

摘要

杜氏肌营养不良症(DMD)是一种致命的神经肌肉疾病,由肌营养不良蛋白基因()突变引起。此前,我们应用 CRISPR-Cas9 介导的“单切”基因组编辑技术,在 DMD 的动物模型中纠正了多种遗传突变。然而,高效的体内基因组编辑需要高剂量的腺相关病毒(AAV),这给临床应用带来了挑战。在这项研究中,我们将 Cas9 核酸酶包装在单链 AAV(ssAAV)中,并将 CRISPR 单指导 RNA 包装在自我互补 AAV(scAAV)中,然后将这种双 AAV 系统递送到 DMD 小鼠模型中。高效基因组编辑所需的 scAAV 剂量至少比 ssAAV 低 20 倍。接受系统治疗的小鼠表现出肌营养不良蛋白表达的恢复和肌肉收缩力的改善。这些发现表明,使用 scAAV 系统可以显著提高 CRISPR-Cas9 介导的基因组编辑效率。这代表着朝着 DMD 的基因组编辑治疗转化迈出了重要一步。

相似文献

[1]
Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system.

Sci Adv. 2020-2-19

[2]
CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System.

Methods Mol Biol. 2023

[3]
Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy.

Mol Ther. 2021-11-3

[4]
In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.

Circ Res. 2017-9-29

[5]
Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy without Causing Serious Lesions in mdx Mice.

Mol Ther. 2019-5-15

[6]
Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy.

Nat Commun. 2017-2-14

[7]
CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells.

Sci Adv. 2019-3-6

[8]
Dystrophin Gene-Editing Stability Is Dependent on Dystrophin Levels in Skeletal but Not Cardiac Muscles.

Mol Ther. 2021-3-3

[9]
The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy.

Hum Gene Ther. 2022-5

[10]
Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.

Mol Ther. 2020-9-2

引用本文的文献

[1]
A Comprehensive Review of Fortification, Bioavailability, and Health Benefits of Folate.

Int J Mol Sci. 2025-8-9

[2]
Engineering Targeted Gene Delivery Systems for Primary Hereditary Skeletal Myopathies: Current Strategies and Future Perspectives.

Biomedicines. 2025-8-16

[3]
Advancements in CRISPR/Cas systems for disease treatment.

Acta Pharm Sin B. 2025-6

[4]
Optimized genomic editing of a common Duchenne muscular dystrophy mutation in patient-derived muscle cells and a new humanized mouse model.

Mol Ther Nucleic Acids. 2025-5-16

[5]
Gene editing therapy as a therapeutic approach for cardiovascular diseases in animal models: A scoping review.

PLoS One. 2025-6-4

[6]
Gene Editing for Duchenne Muscular Dystrophy: From Experimental Models to Emerging Therapies.

Degener Neurol Neuromuscul Dis. 2025-4-12

[7]
Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing.

Biomaterials. 2025-10

[8]
Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications.

J Biomed Sci. 2025-2-21

[9]
T4 DNA polymerase prevents deleterious on-target DNA damage and enhances precise CRISPR editing.

EMBO J. 2024-9

[10]
Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model.

Nat Commun. 2024-7-15

本文引用的文献

[1]
CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells.

Sci Adv. 2019-3-6

[2]
Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy.

Nat Med. 2019-2-18

[3]
Identification of preexisting adaptive immunity to Cas9 proteins in humans.

Nat Med. 2019-1-28

[4]
Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10.

Nat Med. 2019-1-21

[5]
AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice.

JCI Insight. 2018-12-6

[6]
Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.

Science. 2018-8-30

[7]
Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy.

Mol Ther. 2018-7-17

[8]
Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production.

Neurology. 2018-5-11

[9]
Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing.

Physiol Rev. 2018-7-1

[10]
CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles.

Proc Natl Acad Sci U S A. 2018-2-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索