Department of Electrical and Computer Engineering, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758, United States.
Omega Optics Inc., 8500 Shoal Creek Blvd., Bldg. 4, Suite 200, Austin, Texas 78757, United States.
ACS Sens. 2020 Mar 27;5(3):861-869. doi: 10.1021/acssensors.0c00180. Epub 2020 Mar 16.
Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs-InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs-InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer-Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs-InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device's footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy.
基于集成光子电路的中红外(mid-IR)吸收光谱在痕量气体传感应用中显示出巨大的潜力,其中 mid-IR 辐射直接与目标分析物相互作用。在本文中,考虑到具有量子级联激光器(QCL)和量子级联探测器(QCD)的单片集成电路,选择 InGaAs-InP 平台来制造无源波导气体传感器件。设计并制造了具有空芯光子晶体波导(HPCW)和亚波长光栅包层波导(SWW)的全悬浮 InGaAs 波导器件,用于在低折射率对比度 InGaAs-InP 平台上在 λ = 6.15 μm 处进行中红外传感。我们使用长 1mm 的悬空 HPCW 和长 3mm 的悬空 SWW 分别进行了实验检测,得到的传播损耗分别为 39.1dB/cm 和 4.1dB/cm。此外,根据 Beer-Lambert 红外吸收定律和离散元件的实验结果,我们从 QCL/QCD 集成的 SWW 传感器中估计出最小可检测气体浓度为 84ppb。据我们所知,这是首次在如此长波长的 InGaAs-InP 平台上展示悬空 InGaAs 膜波导的气体传感结果。此外,与 HPCW 相比,SWW 的低传播损耗和 TM 模式兼容性使其能够减少总传输损耗和全集成器件足迹的尺寸,这一结果强调了其优势。这项研究为具有 TM 偏振特性的量子级联器件和无源波导传感器件的单片集成提供了可能性,可用于片上 mid-IR 吸收光谱学。