Suppr超能文献

基于片上回音壁模式的五光子吸收上转换激光发射

Five-photon absorption upconversion lasing from on-chip whispering gallery mode.

作者信息

Huang Ying, Zhu Hai, Zheng Huying, Tang Ziying, Dong Jianwen, Su Shichen, Shen Yan, Gui Xuchun, Deng Shaozhi, Tang Zikang

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631, China.

出版信息

Nanoscale. 2020 Mar 12;12(10):6130-6136. doi: 10.1039/d0nr00326c.

Abstract

In the progress of ultrafast optics, nonlinear interactions between light and matter are very important in scientific and technical fields. In particular, the high-order nonlinear effect induced by multi-photon absorption (MPA) upconversion lasing has injected new impetus into the research on short-wavelength laser sources. Here, we report the realization of amplified spontaneous emission (ASE) by MPA simultaneously in an epitaxy thin film. In addition, by virtue of the excellent optical confinement of cylindrical microcavities with high Q (∼4 × 103) on-chip, we demonstrated, for the first time, low-threshold upconversion lasing of five-photon absorption enhanced by a microcavity at room temperature. The resonant whispering-gallery mode (WGM) distribution in cylindrical microcavities was simulated comprehensively by the finite difference time domain (FDTD) method. We found that the high-order nonlinear optical process could be significantly enhanced in the microcavity with an increase in the lifetime of radiation photons.

摘要

在超快光学的发展进程中,光与物质之间的非线性相互作用在科学和技术领域非常重要。特别是,由多光子吸收(MPA)上转换激光诱导的高阶非线性效应为短波长激光源的研究注入了新的动力。在此,我们报道了在外延薄膜中通过MPA同时实现放大自发辐射(ASE)。此外,借助具有高Q值(约4×10³)的片上圆柱形微腔优异的光学限制,我们首次展示了室温下微腔增强的五光子吸收低阈值上转换激光。通过有限时域差分(FDTD)方法全面模拟了圆柱形微腔中的共振回音壁模式(WGM)分布。我们发现,随着辐射光子寿命的增加,高阶非线性光学过程在微腔中可得到显著增强。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验