Suppr超能文献

组内相关系数偏差的自助法估计

Bootstrap Estimate of Bias for Intraclass Correlation.

作者信息

Liu Xiaofeng Steven, Pompey Kelvin Terrell

机构信息

Xiaofeng Steven Liu, Department of Educational Studies, University of South Carolina, Columbia, SC 29208, USA,

出版信息

J Appl Meas. 2020;21(1):101-108.

Abstract

The estimates of intraclass correlations are known to be biased, but there are few analytical ways to assess the amount of bias. The analytical approach requires the normality assumption to estimate bias. Bootstrap requires no such assumption and can, therefore, be used to estimate bias, regardless of the model assumption. We utilize cluster bootstrapping to calculate the bias in estimating the intraclass correlation. A well-known dataset is provided to illustrate the bias estimation in a typical study design of intraclass correlation, and its implications for other study designs are also discussed.

摘要

众所周知,组内相关系数的估计存在偏差,但评估偏差量的分析方法却很少。分析方法需要正态性假设来估计偏差。而自助法不需要这样的假设,因此,无论模型假设如何,都可用于估计偏差。我们利用聚类自助法来计算估计组内相关系数时的偏差。提供了一个著名的数据集来说明在典型的组内相关研究设计中的偏差估计,并讨论了其对其他研究设计的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验