Park Jungsu, Naresh Kumar A, Cayetano Roent Dune A, Kim Sang-Hyoun
School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Bioresour Technol. 2020 Jun;305:123075. doi: 10.1016/j.biortech.2020.123075. Epub 2020 Feb 24.
Microalgal biomass sequestrates CO and is regarded as a promising renewable feedstock for anaerobic digestion because of its adequate carbohydrate content and lignin-free structure. This study optimizes the dilute-acid pretreatment of Chlorella sp. and subsequent biomethane production using response surface methodology and central composite design with temperature, pretreatment time and solid-to-liquid ratio as variables. A temperature of 64.1 °C, pretreatment time of 1.2 h, and a solid to liquid ratio of 0.29 were the optimal pretreatment conditions and resulted in a methane yield of 302.22 mL CH/g COD and methane production rate of 110.04 mL CH/g VSS-d. The severity factor of 1.5-1.6 was adequate to render the Chlorella sp. bioavailable for high methane recovery. The results obtained from the experiments conformed to those predicted by the model. This study effectively utilizes algal biomass for biomethane production and enables the possibility of scaled-up studies using a closed-loop approach.
微藻生物质能够固存二氧化碳,由于其碳水化合物含量充足且结构无木质素,被视为厌氧消化有前景的可再生原料。本研究采用响应面法和中心复合设计,以温度、预处理时间和固液比为变量,优化了小球藻的稀酸预处理及后续生物甲烷生产。64.1℃的温度、1.2小时的预处理时间和0.29的固液比为最佳预处理条件,甲烷产率为302.22 mL CH/g COD,甲烷生产速率为110.04 mL CH/g VSS-d。1.5 - 1.6的强度因子足以使小球藻生物可利用以实现高甲烷回收率。实验所得结果与模型预测结果相符。本研究有效利用藻类生物质进行生物甲烷生产,并使得采用闭环方法进行放大研究成为可能。