Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany.
Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany.
eNeuro. 2020 Apr 10;7(2). doi: 10.1523/ENEURO.0305-18.2020. Print 2020 Mar/Apr.
Transformations between sensory representations are shaped by neural mechanisms at the cellular and the circuit level. In the insect olfactory system, the encoding of odor information undergoes a transition from a dense spatiotemporal population code in the antennal lobe to a sparse code in the mushroom body. However, the exact mechanisms shaping odor representations and their role in sensory processing are incompletely identified. Here, we investigate the transformation from dense to sparse odor representations in a spiking model of the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike frequency adaptation at the cellular level and lateral inhibition at the circuit level. We find that cellular adaptation is essential for sparse representations in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space (population sparseness). The interplay of both mechanisms shapes spatiotemporal odor representations, which are optimized for the discrimination of odors during stimulus onset and offset. Response pattern correlation across different stimuli showed a nonmonotonic dependence on the strength of lateral inhibition with an optimum at intermediate levels, which is explained by two counteracting mechanisms. In addition, we find that odor identity is stored on a prolonged timescale in the adaptation levels but not in the spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the location of the so-called odor trace.
感觉代表之间的转换是由细胞和电路水平的神经机制塑造的。在昆虫嗅觉系统中,气味信息的编码经历了从触角叶中密集的时空群体编码到蘑菇体中稀疏编码的转变。然而,确切的塑造气味表示的机制及其在感觉处理中的作用还不完全确定。在这里,我们研究了昆虫嗅觉系统的尖峰模型中从密集到稀疏的气味表示的转换,重点关注两种普遍存在的神经机制:细胞水平的尖峰频率适应和电路水平的侧抑制。我们发现,细胞适应对于时间上的稀疏表示(时间稀疏)是必不可少的,而侧抑制调节神经元空间中的稀疏度(种群稀疏)。这两种机制的相互作用塑造了时空气味表示,这些表示在刺激开始和结束时对气味的辨别进行了优化。跨不同刺激的响应模式相关性显示出与侧抑制强度的非单调依赖性,在中间水平达到最佳,这可以用两种相互抵消的机制来解释。此外,我们发现气味身份在蘑菇体的主细胞的适应水平上以延长的时间尺度存储,但不在其尖峰活动中存储,这为所谓的气味痕迹的位置提供了一个可测试的假设。