Instituto de Estudios Avanzados, Caracas, Venezuela.
Facultad de Ciencias, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela.
Front Cell Infect Microbiol. 2020 Feb 14;10:46. doi: 10.3389/fcimb.2020.00046. eCollection 2020.
There is no effective cure for Chagas disease, which is caused by infection with the arthropod-borne parasite, . In the search for new drugs to treat Chagas disease, potential therapeutic targets have been identified by exploiting the differences between the mechanisms involved in intracellular Ca homeostasis, both in humans and in trypanosomatids. In the trypanosomatid, intracellular Ca regulation requires the concerted action of three intracellular organelles, the endoplasmic reticulum, the single unique mitochondrion, and the acidocalcisomes. The single unique mitochondrion and the acidocalcisomes also play central roles in parasite bioenergetics. At the parasite plasma membrane, a Ca-ATPase (PMCA) with significant differences from its human counterpart is responsible for Ca extrusion; a distinctive sphingosine-activated Ca channel controls Ca entrance to the parasite interior. Several potential anti-trypansosomatid drugs have been demonstrated to modulate one or more of these mechanisms for Ca regulation. The antiarrhythmic agent amiodarone and its derivatives have been shown to exert trypanocidal effects through the disruption of parasite Ca homeostasis. Similarly, the amiodarone-derivative dronedarone disrupts Ca homeostasis in epimastigotes, collapsing the mitochondrial membrane potential (ΔΨ), and inducing a large increase in the intracellular Ca concentration ([Ca]) from this organelle and from the acidocalcisomes in the parasite cytoplasm. The same general mechanism has been demonstrated for SQ109, a new anti-tuberculosis drug with potent trypanocidal effect. Miltefosine similarly induces a large increase in the [Ca] acting on the sphingosine-activated Ca channel, the mitochondrion and acidocalcisomes. These examples, in conjunction with other evidence we review herein, strongly support targeting Ca homeostasis as a strategy against Chagas disease.
尚无有效的方法可治愈恰加斯病,这种疾病是由节肢动物传播的寄生虫感染引起的。在寻找治疗恰加斯病的新药时,人们利用人类和原生动物细胞内钙稳态机制之间的差异,确定了潜在的治疗靶标。在原生动物中,细胞内钙调节需要内质网、唯一的独特线粒体和酸性钙小体这三个细胞内细胞器的协同作用。唯一的独特线粒体和酸性钙小体在寄生虫生物能量学中也起着核心作用。在寄生虫质膜上,一种 Ca-ATP 酶(PMCA)与人类对应物有显著差异,负责 Ca 外排;一种独特的神经鞘氨醇激活的 Ca 通道控制 Ca 进入寄生虫内部。几种潜在的抗原生动物药物已被证明可调节这些 Ca 调节机制中的一种或多种。抗心律失常药胺碘酮及其衍生物通过破坏寄生虫钙稳态发挥杀寄生虫作用。同样,胺碘酮衍生物决奈达隆破坏 锥虫的钙稳态,使线粒体膜电位(ΔΨ)崩溃,并导致细胞内 Ca 浓度从该细胞器和寄生虫细胞质中的酸性钙小体大量增加。新的抗结核药物 SQ109 也具有很强的杀寄生虫作用,其作用机制与此类似。米替福新也通过作用于神经鞘氨醇激活的 Ca 通道、线粒体和酸性钙小体来诱导 [Ca] 的大量增加。这些例子,以及我们在此综述中回顾的其他证据,有力地支持将钙稳态作为治疗恰加斯病的一种策略。