Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland.
Department of Physics, University of Helsinki, Helsinki, Finland.
J Mol Biol. 2020 May 1;432(10):3251-3268. doi: 10.1016/j.jmb.2020.02.028. Epub 2020 Mar 2.
Surfactant protein B (SP-B) is essential in transferring surface-active phospholipids from membrane-based surfactant complexes into the alveolar air-liquid interface. This allows maintaining the mechanical stability of the surfactant film under high pressure at the end of expiration; therefore, SP-B is crucial in lung function. Despite its necessity, the structure and the mechanism of lipid transfer by SP-B have remained poorly characterized. Earlier, we proposed higher-order oligomerization of SP-B into ring-like supramolecular assemblies. In the present work, we used coarse-grained molecular dynamics simulations to elucidate how the ring-like oligomeric structure of SP-B determines its membrane binding and lipid transfer. In particular, we explored how SP-B interacts with specific surfactant lipids, and how consequently SP-B reorganizes its lipid environment to modulate the pulmonary surfactant structure and function. Based on these studies, there are specific lipid-protein interactions leading to perturbation and reorganization of pulmonary surfactant layers. Especially, we found compelling evidence that anionic phospholipids and cholesterol are needed or even crucial in the membrane binding and lipid transfer function of SP-B. Also, on the basis of the simulations, larger oligomers of SP-B catalyze lipid transfer between adjacent surfactant layers. Better understanding of the molecular mechanism of SP-B will help in the design of therapeutic SP-B-based preparations and novel treatments for fatal respiratory complications, such as the acute respiratory distress syndrome.
表面活性蛋白 B(SP-B)在将膜结合型表面活性物质复合物中的表面活性磷脂转移到肺泡气-液界面中起着至关重要的作用。这使得表面活性物质膜在呼气末高压下保持机械稳定性;因此,SP-B 对肺功能至关重要。尽管它是必需的,但 SP-B 的脂质转移结构和机制仍未得到很好的描述。早些时候,我们提出了 SP-B 更高阶的寡聚化形成环状超分子组装。在本工作中,我们使用粗粒化分子动力学模拟来阐明 SP-B 的环状寡聚结构如何决定其膜结合和脂质转移。特别是,我们探索了 SP-B 如何与特定的表面活性脂质相互作用,以及 SP-B 如何相应地重组其脂质环境来调节肺表面活性物质的结构和功能。基于这些研究,存在特定的脂质-蛋白相互作用,导致肺表面活性剂层的扰动和重组。特别是,我们发现有令人信服的证据表明,阴离子磷脂和胆固醇是 SP-B 膜结合和脂质转移功能所必需的,甚至是至关重要的。此外,基于模拟,SP-B 的较大寡聚物可以促进相邻表面活性剂层之间的脂质转移。更好地了解 SP-B 的分子机制将有助于设计基于 SP-B 的治疗制剂和治疗致命性呼吸并发症的新方法,如急性呼吸窘迫综合征。