Suppr超能文献

硫化氢通过抑制中心碳代谢来调节免疫反应,从而促进结核病。

Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis.

机构信息

Africa Health Research Institute, 4001 Durban, KwaZulu Natal, South Africa.

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6663-6674. doi: 10.1073/pnas.1919211117. Epub 2020 Mar 5.

Abstract

The ubiquitous gasotransmitter hydrogen sulfide (HS) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of HS in () pathogenesis. We showed that infected CSE mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro infection of macrophages resulted in reduced colony forming units in CSE cells. Chemical complementation of infected WT and CSE macrophages using the slow HS releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that HS is the effector molecule regulating survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1β, IL-6, TNF-α, and IFN-γ levels in response to infection. Notably, infected CSE macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between HS and central metabolism. Our data suggest that excessive HS produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1β, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of HS-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.

摘要

无处不在的气体递质硫化氢 (HS) 已被认为在人类健康中发挥着关键作用。我们使用半胱氨酸γ-裂解酶 (CSE) 缺陷小鼠,证明了 HS 在结核病发病机制中的意外作用。我们表明,感染 CSE 的小鼠比 WT 小鼠存活时间更长,并且支持肺部、脾脏和肝脏中的病理学减轻和细菌负荷降低。同样,体外感染巨噬细胞会导致 CSE 细胞中的菌落形成单位减少。使用缓慢释放 HS 的 GYY3147 和 CSE 抑制剂 DL-炔丙基甘氨酸对感染的 WT 和 CSE 巨噬细胞进行化学补充,表明 HS 是调节巨噬细胞中存活的效应分子。此外,我们证明 CSE 促进过度的先天免疫反应,抑制适应性免疫反应,并降低循环中 IL-1β、IL-6、TNF-α 和 IFN-γ 水平对感染的反应。值得注意的是,感染的 CSE 巨噬细胞显示出通过糖酵解和戊糖磷酸途径的通量增加,从而在 HS 和中心代谢之间建立了关键联系。我们的数据表明,感染 WT 小鼠产生的过多 HS 降低了 HIF-1α 水平,从而抑制糖酵解和 IL-1β、IL-6 和 IL-12 的产生,并增加了细菌负荷。HS 产生酶在人类坏死性、非坏死性和空洞性肺结核 (TB) 病变中的空间分布证明了临床相关性。总之,CSE 通过改变小鼠中的免疫代谢来加剧结核病发病机制,抑制 CSE 或调节糖酵解可能是宿主定向结核病控制的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77f9/7104411/5a7dfec8eba8/pnas.1919211117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验