Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany.
Department of Nephrology, Hannover Medical School, Hanover, Germany.
Front Immunol. 2020 Feb 19;11:265. doi: 10.3389/fimmu.2020.00265. eCollection 2020.
Organ gene therapy represents a promising tool to correct diseases or improve graft survival after transplantation. Polymorphic variation of the major histocompatibility complex (MHC) antigens remains a major obstacle to long-term graft survival after transplantation. Previously, we demonstrated that MHC-silenced cells are protected against allogeneic immune responses. We also showed the feasibility to silence MHC in the lung. Here, we aimed at the genetic engineering of the kidney toward permanent silencing of MHC antigens in a rat model. We constructed a sub-normothermic perfusion system to deliver lentiviral vectors encoding shRNAs targeting β2-microglobulin and the class II transactivator to the kidney. In addition, the vector contained the sequence for a secreted nanoluciferase. After kidney transplantation (ktx), we detected bioluminescence in the plasma and urine of recipients of an engineered kidney during the 6 weeks of post-transplant monitoring, indicating a stable transgene expression. Remarkably, transcript levels of β2-microglobulin and the class II transactivator were decreased by 70% in kidneys expressing specific shRNAs. Kidney genetic modification did not cause additional cell death compared to control kidneys after machine perfusion. Nevertheless, cytokine secretion signatures were altered during perfusion with lentiviral vectors as revealed by an increase in the secretion of IL-10, MIP-1α, MIP-2, IP-10, and EGF and a decrease in the levels of IL-12, IL-17, MCP-1, and IFN-γ. Biodistribution assays indicate that the localization of the vector was restricted to the graft. This study shows the potential to generate immunologically invisible kidneys showing great promise to support graft survival after transplantation and may contribute to reduce the burden of immunosuppression.
器官基因治疗代表了一种有前途的工具,可以纠正疾病或改善移植后的移植物存活。主要组织相容性复合体 (MHC) 抗原的多态性变异仍然是移植后长期移植物存活的主要障碍。以前,我们证明了沉默 MHC 的细胞可以免受同种异体免疫反应的影响。我们还证明了在肺中沉默 MHC 的可行性。在这里,我们旨在对肾脏进行基因工程,以在大鼠模型中实现 MHC 抗原的永久沉默。我们构建了一个亚低温灌注系统,将编码针对β2-微球蛋白和 II 类转录激活物的 shRNA 的慢病毒载体递送到肾脏。此外,该载体还包含分泌型纳米荧光素酶的序列。在肾移植 (ktx) 后,我们在移植后 6 周的监测期间,在接受工程化肾脏的受者的血浆和尿液中检测到生物发光,表明稳定的转基因表达。值得注意的是,表达特异性 shRNA 的肾脏中β2-微球蛋白和 II 类转录激活物的转录本水平降低了 70%。与对照肾脏相比,机器灌注后的基因修饰肾脏不会导致额外的细胞死亡。然而,慢病毒载体灌注会改变细胞因子分泌特征,表现为 IL-10、MIP-1α、MIP-2、IP-10 和 EGF 的分泌增加,而 IL-12、IL-17、MCP-1 和 IFN-γ的水平降低。生物分布测定表明载体的定位仅限于移植物。这项研究显示了产生免疫不可见肾脏的潜力,有望支持移植后的移植物存活,并可能有助于减轻免疫抑制的负担。