Aluja Martín, Pascacio-Villafán Carlos, Altúzar-Molina Alma, Monribot-Villanueva Juan, Guerrero-Analco José A, Enciso Erick, Ortega Rafael, Acosta Emilio, Guillén Larissa
Instituto de Ecología, A.C. - INECOL, Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico.
Instituto de Ecología, A.C. - INECOL, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico.
J Chem Ecol. 2020 Apr;46(4):430-441. doi: 10.1007/s10886-020-01164-8. Epub 2020 Mar 5.
Despite their enormous economic importance and the fact that there are almost 5000 tephritid (Diptera) species, fruit fly - host plant interactions are poorly understood from a chemical perspective. We analyzed the interactions among Anastrepha acris (a little studied monophagous tephritid) and its highly toxic host plant Hippomane mancinella from chemical, ecological and experimental perspectives, and also searched for toxicants from H. mancinella in the larval-pupal endoparasitoid Doryctobracon areolatus. We identified 18 phenolic compounds from H. mancinella pulp belonging to different chemical groups including phenylpropanoids, flavonoids, chalcones and coumarins. No traces of Hippomanin A were detected in larvae, pupae or A. acris adults, or in D. areolatus adults, implying that A. acris larvae can metabolize this toxicant, that as a result does not reach the third trophic level. We tested the "behavioral preference - lack of larval specialization-hypothesis" via feeding experiments with a larval rearing medium containing H. mancinella fruit (skin + pulp or pulp alone). The high toxicity of H. mancinella was confirmed as only two (out of 2520 in three experiments) A. ludens larvae (a polyphagous pest species that preferentially feeds on plants within the Rutaceae) survived without reaching the adult stage when fed on media containing H. mancinella, whereas A. acris larvae developed well and produced healthy adults. Together, these findings open a window of opportunity to study the detoxification mechanisms used by tephritid fruit flies.
尽管果实蝇具有巨大的经济重要性,且全世界有近5000种实蝇科(双翅目)物种,但从化学角度来看,人们对果实蝇与寄主植物之间的相互作用了解甚少。我们从化学、生态和实验角度分析了尖腹果实蝇(一种研究较少的单食性实蝇)与其剧毒寄主植物毒番石榴之间的相互作用,并在幼虫-蛹内寄生蜂乳晕多胚跳小蜂中寻找来自毒番石榴的有毒物质。我们从毒番石榴果肉中鉴定出18种酚类化合物,它们属于不同的化学类别,包括苯丙烷类、黄酮类、查耳酮类和香豆素类。在幼虫、蛹、尖腹果实蝇成虫或乳晕多胚跳小蜂成虫中均未检测到毒番石榴素A的痕迹,这意味着尖腹果实蝇幼虫可以代谢这种有毒物质,因此它不会进入第三营养级。我们通过用含有毒番石榴果实(果皮+果肉或仅果肉)的幼虫饲养培养基进行饲养实验,检验了“行为偏好-缺乏幼虫专一性假说”。毒番石榴的高毒性得到了证实,因为在以含有毒番石榴的培养基饲养时,只有两只(在三个实验的2520只中)拉美实蝇幼虫(一种多食性害虫物种,优先取食芸香科植物)存活下来但未发育到成虫阶段,而尖腹果实蝇幼虫发育良好并产生了健康的成虫。总之,这些发现为研究实蝇科果实蝇所使用的解毒机制打开了一扇机会之窗。