Suppr超能文献

一种数据驱动的方法揭示了老年人肌肉中的新型肌纤维簇。

A data-driven methodology reveals novel myofiber clusters in older human muscles.

机构信息

Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.

Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

FASEB J. 2020 Apr;34(4):5525-5537. doi: 10.1096/fj.201902350R. Epub 2020 Mar 5.

Abstract

Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.

摘要

骨骼肌控制着姿势、运动和力量,并影响着全身的新陈代谢。肌肉由不同类型的肌纤维组成,每种肌纤维都具有特定的代谢、分子和收缩特性。因此,肌纤维分类被认为是理解肌肉生物学(病理生理学)的关键。三种肌球蛋白重链(MyHC)同工型(MyHC-1、MyHC-2A 和 MyHC-2X)的表达标志着人类肌纤维。通常,肌纤维的分类是通过基于肉眼的组织学分析来进行的。这种经典方法不足以捕捉表达多种 MyHC-同工型的复杂肌纤维类别。因此,我们开发了一种基于多种同工型的肌纤维高通量特征分析的方法程序。在 56 名健康老年人的肌肉活检中,我们测量了每根肌纤维三种最丰富的 MyHC 同工型的平均荧光强度,并使用计算生物学工具来识别肌纤维类别。无监督聚类揭示了存在六种不同的肌纤维簇。将使用相同图像进行肌纤维肉眼评估的结果与聚类结果进行比较后发现,有些肌纤维簇无法被检测到或经常被错误分类。这些肌纤维簇的存在得到了肌节基因 RNA 表达水平的支持。此外,表达所有三种 MyHC 同工型的一个簇与肌肉健康的组织学测量相关。总之,这种方法程序能够深入分析复杂的肌肉异质性。本研究为进一步研究比较肌纤维组成提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验