文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ClusPro 在 CAPRI 的第 38 至 45 轮:朝着将基于模板的方法与自由对接相结合的方向发展。

ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA.

出版信息

Proteins. 2020 Aug;88(8):1082-1090. doi: 10.1002/prot.25887. Epub 2020 Mar 23.


DOI:10.1002/prot.25887
PMID:32142178
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7874234/
Abstract

Targets in the protein docking experiment CAPRI (Critical Assessment of Predicted Interactions) generally present new challenges and contribute to new developments in methodology. In rounds 38 to 45 of CAPRI, most targets could be effectively predicted using template-based methods. However, the server ClusPro required structures rather than sequences as input, and hence we had to generate and dock homology models. The available templates also provided distance restraints that were directly used as input to the server. We show here that such an approach has some advantages. Free docking with template-based restraints using ClusPro reproduced some interfaces suggested by weak or ambiguous templates while not reproducing others, resulting in correct server predicted models. More recently we developed the fully automated ClusPro TBM server that performs template-based modeling and thus can use sequences rather than structures of component proteins as input. The performance of the server, freely available for noncommercial use at https://tbm.cluspro.org, is demonstrated by predicting the protein-protein targets of rounds 38 to 45 of CAPRI.

摘要

在蛋白质对接实验 CAPRI(相互作用预测的关键评估)中,目标通常会带来新的挑战,并为方法学的新发展做出贡献。在 CAPRI 的第 38 至 45 轮中,大多数目标都可以使用基于模板的方法进行有效预测。然而,ClusPro 服务器需要的是结构而不是序列作为输入,因此我们不得不生成和对接同源模型。可用的模板还提供了距离约束,这些约束直接作为输入提供给服务器。我们在这里表明,这种方法具有一些优势。使用 ClusPro 进行基于模板的自由对接可以再现一些由弱模板或不明确模板提示的界面,而不会再现其他界面,从而得到正确的服务器预测模型。最近,我们开发了完全自动化的 ClusPro TBM 服务器,它可以进行基于模板的建模,因此可以使用组成蛋白质的序列而不是结构作为输入。该服务器的性能可通过预测 CAPRI 的第 38 至 45 轮的蛋白质-蛋白质目标来证明,该服务器可在非商业用途免费使用,网址为 https://tbm.cluspro.org。

相似文献

[1]
ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.

Proteins. 2020-8

[2]
Challenges and opportunities of automated protein-protein docking: HDOCK server vs human predictions in CAPRI Rounds 38-46.

Proteins. 2020-8

[3]
Structure prediction of biological assemblies using GALAXY in CAPRI rounds 38-45.

Proteins. 2020-8

[4]
An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45.

Proteins. 2020-8

[5]
Performance of human and server prediction in CAPRI rounds 38-45.

Proteins. 2020-8

[6]
Performance of ZDOCK and IRAD in CAPRI rounds 39-45.

Proteins. 2020-8

[7]
Template-based modeling and ab-initio docking using CoDock in CAPRI.

Proteins. 2020-8

[8]
How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.

Proteins. 2020-8

[9]
Template-based modeling of diverse protein interactions in CAPRI rounds 38-45.

Proteins. 2020-8

[10]
Docking proteins and peptides under evolutionary constraints in Critical Assessment of PRediction of Interactions rounds 38 to 45.

Proteins. 2020-8

引用本文的文献

[1]
Design of nanobody targeting SARS-CoV-2 spike glycoprotein using CDR-grafting assisted by molecular simulation and machine learning.

PLoS Comput Biol. 2025-4-21

[2]
MELD in Action: Harnessing Data to Accelerate Molecular Dynamics.

J Chem Inf Model. 2025-2-24

[3]
The ClusPro AbEMap web server for the prediction of antibody epitopes.

Nat Protoc. 2023-6

[4]
Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery.

Nat Commun. 2022-7-13

[5]
In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools.

Comput Biol Med. 2021-10

本文引用的文献

[1]
Template-based modeling by ClusPro in CASP13 and the potential for using co-evolutionary information in docking.

Proteins. 2019-10-1

[2]
Driven to near-experimental accuracy by refinement via molecular dynamics simulations.

Proteins. 2019-6-24

[3]
What method to use for protein-protein docking?

Curr Opin Struct Biol. 2019-2-1

[4]
High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock.

PLoS Comput Biol. 2017-12-27

[5]
The challenge of modeling protein assemblies: the CASP12-CAPRI experiment.

Proteins. 2018-3

[6]
MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets.

Nat Biotechnol. 2017-11

[7]
Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.

Proteins. 2018-3

[8]
ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT.

Bioinformatics. 2017-10-15

[9]
The ClusPro web server for protein-protein docking.

Nat Protoc. 2017-1-12

[10]
Modeling protein assemblies: Critical Assessment of Predicted Interactions (CAPRI) 15 years hence.: 6TH CAPRI evaluation meeting April 17-19 Tel-Aviv, Israel.

Proteins. 2017-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索