Suppr超能文献

在CASP12中使用隐式溶剂中的短程和长程分子动力学模拟进行蛋白质结构模型优化。

Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.

作者信息

Terashi Genki, Kihara Daisuke

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.

Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907.

出版信息

Proteins. 2018 Mar;86 Suppl 1(Suppl 1):189-201. doi: 10.1002/prot.25373. Epub 2017 Sep 1.

Abstract

Protein structure prediction has matured over years, particularly those which use structure templates for building a model. It can build a model with correct overall conformation in cases where appropriate templates are available. Models with the correct topology can be practically useful for limited purposes that need residue-level accuracy, but further improvement of the models can allow the models to be used in tasks that need detailed structures, such as molecular replacement in X-ray crystallography or structure-based drug screening. Thus, model refinement is an important final step in protein structure prediction to bridge predictions to real-life applications. Model refinement is one of the categories in recent rounds of critical assessment of techniques in protein structure prediction (CASP) and has recently been drawing more attention due to its realized importance. Here we report our group's performance in the refinement category in CASP12. Our method is based on inexpensive short molecular dynamics (MD) simulations in implicit solvent. Our performance in CASP12 was among the top, which was consistent with the previous round, CASP11. Our method with short MD runs achieved comparable performance with other methods that used longer simulations. Detailed analyses found that improvements typically occurred in entire regions of a structure rather than only in flexible loop regions. The remaining challenge in the structure refinement includes large conformational refinement which involves substantial motions of secondary structure elements or domains.

摘要

蛋白质结构预测多年来已渐趋成熟,尤其是那些使用结构模板来构建模型的方法。在有合适模板可用的情况下,它能够构建出具有正确整体构象的模型。具有正确拓扑结构的模型对于需要残基水平准确性的有限目的实际上是有用的,但是模型的进一步改进可以使其用于需要详细结构的任务,例如X射线晶体学中的分子置换或基于结构的药物筛选。因此,模型精修是蛋白质结构预测中的一个重要的最后步骤,以将预测与实际应用联系起来。模型精修是最近几轮蛋白质结构预测技术关键评估(CASP)中的类别之一,并且由于其已认识到的重要性,最近受到了更多关注。在此我们报告我们小组在CASP12精修类别中的表现。我们的方法基于在隐式溶剂中进行的低成本短分子动力学(MD)模拟。我们在CASP12中的表现名列前茅,这与上一轮CASP11一致。我们的短MD运行方法与其他使用更长模拟的方法取得了相当的性能。详细分析发现,改进通常发生在结构的整个区域,而不仅仅是在柔性环区域。结构精修中剩下的挑战包括涉及二级结构元件或结构域大量运动的大构象精修。

相似文献

引用本文的文献

2
Evaluation of model refinement in CASP14.评估 CASP14 中的模型精化。
Proteins. 2021 Dec;89(12):1852-1869. doi: 10.1002/prot.26185. Epub 2021 Jul 29.
5
Performance and Its Limits in Rigid Body Protein-Protein Docking.刚体蛋白质-蛋白质对接的性能及其限制。
Structure. 2020 Sep 1;28(9):1071-1081.e3. doi: 10.1016/j.str.2020.06.006. Epub 2020 Jul 9.

本文引用的文献

3
Assessment of template-based modeling of protein structure in CASP11.CASP11中基于模板的蛋白质结构建模评估。
Proteins. 2016 Sep;84 Suppl 1(Suppl 1):200-20. doi: 10.1002/prot.25049. Epub 2016 Jun 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验