Gellings Esther, Cogdell Richard J, van Hulst Niek F
ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
J Phys Chem Lett. 2020 Apr 2;11(7):2430-2435. doi: 10.1021/acs.jpclett.0c00375. Epub 2020 Mar 12.
Excitation spectroscopy gives direct insight into the excited state manifold, energy transfer, transient intermediates, vibrations, and so on. Unfortunately, excitation spectroscopy of single molecules under ambient conditions has remained challenging. Here we present excitation spectra alongside emission spectra of the same individual light-harvesting complex LH2 of the purple bacteria . The acquisition of both the excited and ground state spectra allows us to quantify disorder and interband correlations, which are key variables for the interpretation of observed long-lasting coherences. We have overcome the low photostability and small fluorescence quantum yield that are inherent to many biologically relevant systems by combining single-molecule Fourier transform spectroscopy, low excitation intensities, and effective data analysis. We find that LH2 complexes show little spectral variation (130-170 cm), that their two absorption bands (B800-B850) are uncorrelated, and that the Stokes shift is not constant. The low amount of spectral disorder underlines the protective role of the protein scaffold, benefiting the efficient energy transport throughout the light-harvesting membrane.
激发光谱能够直接洞察激发态多重态、能量转移、瞬态中间体、振动等等。不幸的是,在环境条件下对单分子进行激发光谱分析仍然具有挑战性。在此,我们展示了紫色细菌中相同单个捕光复合物LH2的激发光谱以及发射光谱。激发态光谱和基态光谱的获取使我们能够量化无序和带间相关性,这些是解释所观察到的持久相干性的关键变量。通过结合单分子傅里叶变换光谱、低激发强度和有效的数据分析,我们克服了许多生物相关系统固有的低光稳定性和小荧光量子产率问题。我们发现LH2复合物的光谱变化很小(130 - 170厘米),其两个吸收带(B800 - B850)不相关,并且斯托克斯位移不是恒定的。低水平的光谱无序突出了蛋白质支架的保护作用,有利于在整个捕光膜中进行高效的能量传输。