Hopper Thomas R, Gorodetsky Andrei, Jeong Ahhyun, Krieg Franziska, Bodnarchuk Maryna I, Maimaris Marios, Chaplain Marine, Macdonald Thomas J, Huang Xiaokun, Lovrincic Robert, Kovalenko Maksym V, Bakulin Artem A
Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom.
Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland.
Nano Lett. 2020 Apr 8;20(4):2271-2278. doi: 10.1021/acs.nanolett.9b04491. Epub 2020 Mar 12.
Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck". However, the role of carrier-carrier interactions, and the material properties that control cooling in LHPs, is still disputed. To address these factors, we utilize ultrafast "pump-push-probe" spectroscopy on LHP nanocrystal (NC) films. We find that the addition of cold carriers to LHP NCs increases the cooling rate, competing with the phonon bottleneck. By comparing different NCs and bulk samples, we deduce that the cooling behavior is intrinsic to the LHP composition and independent of the NC size or surface. This can be contrasted with other colloidal nanomaterials, where confinement and trapping considerably influence the cooling dynamics.
载流子冷却在半导体科学领域受到广泛关注。它与载流子-载流子和载流子-声子耦合相关,对材料的光伏性能具有深远影响。最近的瞬态光学研究表明,卤化铅钙钛矿(LHP)中高载流子密度会通过“声子瓶颈”降低冷却速率。然而,载流子-载流子相互作用的作用以及控制LHP冷却的材料特性仍存在争议。为了解决这些因素,我们对LHP纳米晶体(NC)薄膜采用超快“泵浦-推挽-探测”光谱技术。我们发现向LHP NC中添加冷载流子会提高冷却速率,与声子瓶颈相竞争。通过比较不同的NC和块状样品,我们推断冷却行为是LHP组成所固有的,与NC尺寸或表面无关。这与其他胶体纳米材料形成对比,在其他胶体纳米材料中,限域和俘获对冷却动力学有很大影响。