Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom.
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
ACS Nano. 2023 Apr 11;17(7):6330-6340. doi: 10.1021/acsnano.2c10479. Epub 2023 Mar 20.
Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.
过渡金属二卤族化合物(TMDs)具有出色的半导体性能,使其成为下一代光电子和电子设备的有前途的材料。这些特性是由基本的载流子-载流子和载流子-声子相互作用赋予的,这些相互作用是热载流子冷却的基础。最近的瞬态吸收研究报告了 TMDs 中载流子冷却的超快时间尺度,该时间尺度可以通过热声子瓶颈(HPB)在高激发密度下减慢,并根据光电子应用讨论了这些发现。然而,TMDs 中 HPB 的定量描述,包括电子-晶格耦合的细节以及冷却如何受到载流子之间能量再分配的影响,仍然缺乏。在这里,我们使用飞秒泵浦-推-探测光谱学作为一种单一方法,系统地研究了在多晶 WS 基准 TMD 单层中,热载流子与光学声子、冷载流子和缺陷的散射。通过控制带间泵浦和带内推激发,我们实时观察到(i)超快的“本征”冷却速率约为 18 ± 2.7 eV/ps,随着热载流子密度的增加,冷却速率可以减慢,(ii)在较高冷载流子密度下 HPB 的衰减,暴露出载流子-载流子相互作用在介导冷却方面的先前未披露的作用,以及(iii)晶格缺陷在亚皮秒时间尺度上拦截高能热载流子,这可能解释了 TMDs 在带隙以上激发时光致发光产率较低的原因。