Suppr超能文献

神经损伤后睡眠和突触修剪的双向调控。

Bidirectional Regulation of Sleep and Synapse Pruning after Neural Injury.

机构信息

Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA.

Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095-1763, USA.

出版信息

Curr Biol. 2020 Mar 23;30(6):1063-1076.e3. doi: 10.1016/j.cub.2019.12.065. Epub 2020 Mar 5.

Abstract

Following acute neural injury, severed axons undergo programmed Wallerian degeneration over several following days. While sleep has been linked with synaptic reorganization under other conditions, the role of sleep in responses to neural injuries remains poorly understood. To study the relationship between sleep and neural injury responses, we examined Drosophila melanogaster following the removal of antennae or other sensory tissues. Daytime sleep is elevated after antennal or wing injury, but sleep returns to baseline levels within 24 h after injury. Similar increases in sleep are not observed when olfactory receptor neurons are silenced or when other sensory organs are severed, suggesting that increased sleep after injury is not attributed to sensory deprivation, nociception, or generalized inflammatory responses. Neuroprotective disruptions of the E3 ubiquitin ligase highwire and c-Jun N-terminal kinase basket in olfactory receptor neurons weaken the sleep-promoting effects of antennal injury, suggesting that post-injury sleep may be influenced by the clearance of damaged neurons. Finally, we show that pre-synaptic active zones are preferentially removed from severed axons within hours after injury and that depriving recently injured flies of sleep slows the removal of both active zones and damaged axons. These data support a bidirectional interaction between sleep and synapse pruning after antennal injury: locally increasing the need to clear neural debris is associated with increased sleep, which is required for efficient active zone removal after injury.

摘要

在急性神经损伤后,切断的轴突在接下来的几天内经历程序性的 Wallerian 变性。虽然睡眠已被证明与其他条件下的突触重组有关,但睡眠在神经损伤反应中的作用仍知之甚少。为了研究睡眠与神经损伤反应之间的关系,我们研究了去除触角或其他感觉组织后的黑腹果蝇。触角或翅膀受伤后,白天的睡眠会增加,但在受伤后 24 小时内,睡眠会恢复到基线水平。当嗅觉受体神经元被沉默或其他感觉器官被切断时,不会观察到类似的睡眠增加,这表明受伤后睡眠增加并不是由于感觉剥夺、伤害感受或全身性炎症反应引起的。嗅觉受体神经元中 E3 泛素连接酶 highwire 和 c-Jun N-末端激酶 basket 的神经保护破坏削弱了触角损伤的促眠作用,这表明损伤后睡眠可能受到清除受损神经元的影响。最后,我们发现,在损伤后数小时内,被切断的轴突中优先去除了前突触活性区,并且剥夺最近受伤的果蝇的睡眠会减缓活性区和受损轴突的去除。这些数据支持了触角损伤后睡眠和突触修剪之间的双向相互作用:局部增加清除神经碎片的需求与睡眠增加有关,而睡眠是损伤后有效去除活性区所必需的。

相似文献

1
Bidirectional Regulation of Sleep and Synapse Pruning after Neural Injury.
Curr Biol. 2020 Mar 23;30(6):1063-1076.e3. doi: 10.1016/j.cub.2019.12.065. Epub 2020 Mar 5.
2
Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury.
Curr Biol. 2020 Mar 23;30(6):1092-1101.e3. doi: 10.1016/j.cub.2020.02.057. Epub 2020 Mar 5.
4
Regeneration of synapses in the olfactory pathway of locusts after antennal deafferentation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Oct;203(10):867-877. doi: 10.1007/s00359-017-1199-z. Epub 2017 Jul 6.
5
Antennal mechanosensory neurons mediate wing motor reflexes in flying Drosophila.
J Neurosci. 2015 May 20;35(20):7977-91. doi: 10.1523/JNEUROSCI.0034-15.2015.
6
Axon Termination, Pruning, and Synaptogenesis in the Giant Fiber System of Is Promoted by Highwire.
Genetics. 2017 Mar;205(3):1229-1245. doi: 10.1534/genetics.116.197343. Epub 2017 Jan 18.
7
Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila.
Curr Biol. 2020 Mar 23;30(6):1077-1091.e5. doi: 10.1016/j.cub.2020.01.019. Epub 2020 Mar 5.
8
Developmentally programmed remodeling of the Drosophila olfactory circuit.
Development. 2005 Feb;132(4):725-37. doi: 10.1242/dev.01614. Epub 2005 Jan 19.
9
The zinc finger transcription factor Jing is required for dendrite/axonal targeting in Drosophila antennal lobe development.
Dev Biol. 2013 Sep 1;381(1):17-27. doi: 10.1016/j.ydbio.2013.06.023. Epub 2013 Jun 25.
10
Axon Death Pathways Converge on Axundead to Promote Functional and Structural Axon Disassembly.
Neuron. 2017 Jul 5;95(1):78-91.e5. doi: 10.1016/j.neuron.2017.06.031.

引用本文的文献

1
Clock-dependent regulation of a homeostatic sleep center maintains daytime sleep and evening activity.
Curr Biol. 2025 Jul 21;35(14):3496-3506.e5. doi: 10.1016/j.cub.2025.06.003. Epub 2025 Jun 27.
2
Wallerian Degeneration and Clearance of Olfactory Receptor Neuron Axons following Antennal Transection.
Cold Spring Harb Protoc. 2025 Jun 2;2025(6):pdb.prot108167. doi: 10.1101/pdb.prot108167.
3
Sleep deprivation drives brain-wide changes in cholinergic presynapse abundance in .
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2312664121. doi: 10.1073/pnas.2312664121. Epub 2024 Mar 18.
4
Examining Sleep Modulation by Ellipsoid Body Neurons.
eNeuro. 2023 Sep 26;10(9). doi: 10.1523/ENEURO.0281-23.2023. Print 2023 Sep.
5
Ecdysone acts through cortex glia to regulate sleep in .
Elife. 2023 Jan 31;12:e81723. doi: 10.7554/eLife.81723.
8
Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss.
Front Behav Neurosci. 2022 Jan 20;15:777799. doi: 10.3389/fnbeh.2021.777799. eCollection 2021.
9
Glial immune-related pathways mediate effects of closed head traumatic brain injury on behavior and lethality in Drosophila.
PLoS Biol. 2022 Jan 26;20(1):e3001456. doi: 10.1371/journal.pbio.3001456. eCollection 2022 Jan.
10
Many faces of sleep regulation: beyond the time of day and prior wake time.
FEBS J. 2023 Feb;290(4):931-950. doi: 10.1111/febs.16320. Epub 2021 Dec 22.

本文引用的文献

1
Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury.
Curr Biol. 2020 Mar 23;30(6):1092-1101.e3. doi: 10.1016/j.cub.2020.02.057. Epub 2020 Mar 5.
2
Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw.
J Neurosci. 2019 Oct 23;39(43):8457-8470. doi: 10.1523/JNEUROSCI.0016-19.2019. Epub 2019 Sep 6.
4
The E3 ligase Highwire promotes synaptic transmission by targeting the NAD-synthesizing enzyme dNmnat.
EMBO Rep. 2019 Mar;20(3). doi: 10.15252/embr.201846975. Epub 2019 Jan 28.
5
Conditional Synaptic Vesicle Markers for .
G3 (Bethesda). 2019 Mar 7;9(3):737-748. doi: 10.1534/g3.118.200975.
6
Endocytosis at the blood-brain barrier as a function for sleep.
Elife. 2018 Nov 26;7:e43326. doi: 10.7554/eLife.43326.
8
The Taurine Transporter Eaat2 Functions in Ensheathing Glia to Modulate Sleep and Metabolic Rate.
Curr Biol. 2018 Nov 19;28(22):3700-3708.e4. doi: 10.1016/j.cub.2018.10.039. Epub 2018 Nov 8.
9
Cryo-EM structure of the insect olfactory receptor Orco.
Nature. 2018 Aug;560(7719):447-452. doi: 10.1038/s41586-018-0420-8. Epub 2018 Aug 15.
10
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors.
PLoS Genet. 2018 Jul 12;14(7):e1007464. doi: 10.1371/journal.pgen.1007464. eCollection 2018 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验