Suppr超能文献

利用瞬时 CRISPR-Cas9 表达(TRACE)系统通过电穿孔转化新型隐球菌。

Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.

机构信息

Department of Microbiology, University of Georgia, Athens, GA 30602, USA.

Department of Microbiology, University of Georgia, Athens, GA 30602, USA.

出版信息

Fungal Genet Biol. 2020 May;138:103364. doi: 10.1016/j.fgb.2020.103364. Epub 2020 Mar 3.

Abstract

The basidiomycete Cryptococcus neoformans is not only a clinically important pathogen, but also a model organism for studying microbial pathogenesis and eukaryotic biology. One key factor behind its rise as a model organism is its genetic amenability. The widely used methods for transforming the C. neoformans species complex are Agrobacterium-mediated transformation (AMT) for random insertional mutagenesis and biolistic transformation for targeted mutagenesis. Electroporation was introduced to C. neoformans in early 1990s. Although electroporation is economic and yields a large number of transformants, introduced DNA rarely integrates into cryptococcal genome, which limits its use. Biolistic transformation, although costly and inefficient, has been the only method used in targeted mutagenesis in the past two decades. Several modifications, including the use of a donor DNA with split markers, a drug-resistant selection marker, and a recipient strain deficient in non-homologous end joining (NHEJ), have since modestly increased the frequency of genome integration and the rate of homologous replacement of the DNA introduced by electroporation. However, electroporation was not the method of choice for transformation until the recent adoption of CRISPR-Cas9 systems. We have developed a Transient CRISPR-Cas9 coupled with Electroporation System (TRACE), which dramatically facilitates targeted mutagenesis in the Cryptococcus species complex. TRACE combines the high transformation efficiency of electroporation with the high rates of DNA integration due to the transiently expressed CRISPR-Cas9. Here, we briefly discussed the history of electroporation for Cryptococcus transformation and provided detailed procedures for electroporation and the cassettes construction of the TRACE system for various genetic manipulations.

摘要

担子菌新生隐球菌不仅是一种重要的临床病原体,也是研究微生物发病机制和真核生物生物学的模式生物。其成为模式生物的一个关键因素是其遗传可操作性。新生隐球菌种复合体中广泛使用的转化方法是农杆菌介导的转化(AMT)用于随机插入突变和弹道转化用于靶向突变。电穿孔于 20 世纪 90 年代被引入新生隐球菌。尽管电穿孔经济且产生大量转化体,但引入的 DNA 很少整合到隐球菌基因组中,这限制了其用途。虽然弹道转化成本高且效率低,但在过去二十年中一直是靶向突变的唯一方法。自那时以来,包括使用带有分裂标记的供体 DNA、耐药性选择标记以及缺乏非同源末端连接(NHEJ)的受体菌株在内的几种修饰方法,适度提高了基因组整合的频率和电穿孔引入的 DNA 的同源替换率。然而,直到最近采用 CRISPR-Cas9 系统,电穿孔才成为转化的首选方法。我们开发了一种瞬态 CRISPR-Cas9 与电穿孔系统(TRACE),该系统极大地促进了隐球菌种复合体中的靶向突变。TRACE 将电穿孔的高转化效率与由于瞬时表达的 CRISPR-Cas9 而导致的 DNA 整合率高相结合。在这里,我们简要讨论了电穿孔用于隐球菌转化的历史,并提供了用于电穿孔和 TRACE 系统的盒构建的详细程序,以进行各种遗传操作。

相似文献

1
Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.
Fungal Genet Biol. 2020 May;138:103364. doi: 10.1016/j.fgb.2020.103364. Epub 2020 Mar 3.
2
Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Species Complex.
Genetics. 2018 Apr;208(4):1357-1372. doi: 10.1534/genetics.117.300656. Epub 2018 Feb 14.
3
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
mSphere. 2018 Jun 13;3(3). doi: 10.1128/mSphereDirect.00208-18. Print 2018 Jun 27.
4
7
An intergenic "safe haven" region in Cryptococcus neoformans serotype D genomes.
Fungal Genet Biol. 2020 Nov;144:103464. doi: 10.1016/j.fgb.2020.103464. Epub 2020 Sep 15.
8
Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans.
PLoS One. 2016 Oct 6;11(10):e0164322. doi: 10.1371/journal.pone.0164322. eCollection 2016.
9
High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens.
Fungal Genet Biol. 2005 Nov;42(11):904-13. doi: 10.1016/j.fgb.2005.07.003.
10
Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA.
J Bacteriol. 1993 Mar;175(5):1405-11. doi: 10.1128/jb.175.5.1405-1411.1993.

引用本文的文献

2
Functional diversification of the MADS-box gene family in fine-tuning the dimorphic transition of .
mSystems. 2025 Jul 22;10(7):e0046425. doi: 10.1128/msystems.00464-25. Epub 2025 Jun 3.
5
Simple growth conditions improve targeted gene deletion in .
mSphere. 2025 Apr 29;10(4):e0107024. doi: 10.1128/msphere.01070-24. Epub 2025 Apr 2.
6
Identification of a protective antigen reveals the trade-off between iron acquisition and antigen exposure in a global fungal pathogen.
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2420898122. doi: 10.1073/pnas.2420898122. Epub 2025 Feb 13.
7
Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in during thermal stress.
mBio. 2025 Feb 5;16(2):e0176224. doi: 10.1128/mbio.01762-24. Epub 2024 Dec 13.
8
Development of /Phi as a new dominant selection system for genetic manipulation in .
Microbiol Spectr. 2025 Jan 7;13(1):e0161824. doi: 10.1128/spectrum.01618-24. Epub 2024 Nov 20.
9
Alternative isoforms and phase separation of Ref1 repress morphogenesis in Cryptococcus.
Cell Rep. 2024 Nov 26;43(11):114904. doi: 10.1016/j.celrep.2024.114904. Epub 2024 Oct 30.
10
Nickel tolerance is channeled through C-4 methyl sterol oxidase Erg25 in the sterol biosynthesis pathway.
PLoS Genet. 2024 Sep 16;20(9):e1011413. doi: 10.1371/journal.pgen.1011413. eCollection 2024 Sep.

本文引用的文献

2
Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
mSphere. 2018 Jun 13;3(3). doi: 10.1128/mSphereDirect.00208-18. Print 2018 Jun 27.
3
Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Species Complex.
Genetics. 2018 Apr;208(4):1357-1372. doi: 10.1534/genetics.117.300656. Epub 2018 Feb 14.
5
A fluorogenic C. neoformans reporter strain with a robust expression of m-cherry expressed from a safe haven site in the genome.
Fungal Genet Biol. 2017 Nov;108:13-25. doi: 10.1016/j.fgb.2017.08.008. Epub 2017 Sep 12.
6
Targeted Genome Editing via CRISPR in the Pathogen Cryptococcus neoformans.
PLoS One. 2016 Oct 6;11(10):e0164322. doi: 10.1371/journal.pone.0164322. eCollection 2016.
7
Chemical Inhibitors of Non-Homologous End Joining Increase Targeted Construct Integration in Cryptococcus neoformans.
PLoS One. 2016 Sep 19;11(9):e0163049. doi: 10.1371/journal.pone.0163049. eCollection 2016.
9
A genomic safe haven for mutant complementation in Cryptococcus neoformans.
PLoS One. 2015 Apr 9;10(4):e0122916. doi: 10.1371/journal.pone.0122916. eCollection 2015.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验