Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.
PLoS Genet. 2024 Sep 16;20(9):e1011413. doi: 10.1371/journal.pgen.1011413. eCollection 2024 Sep.
Nickel (Ni) is an abundant element on Earth and it can be toxic to all forms of life. Unlike our knowledge of other metals, little is known about the biochemical response to Ni overload. Previous studies in mammals have shown that Ni induces various physiological changes including redox stress, hypoxic responses, as well as cancer progression pathways. However, the primary cellular targets of nickel toxicity are unknown. Here, we used the environmental fungus Cryptococcus neoformans as a model organism to elucidate the cellular response to exogenous Ni. We discovered that Ni causes alterations in ergosterol (the fungal equivalent of mammalian cholesterol) and lipid biosynthesis, and that the Sterol Regulatory Element-Binding transcription factor Sre1 is required for Ni tolerance. Interestingly, overexpression of the C-4 methyl sterol oxidase gene ERG25, but not other genes in the ergosterol biosynthesis pathway tested, increases Ni tolerance in both the wild type and the sre1Δ mutant. Overexpression of ERG25 with mutations in the predicted binding pocket to a metal cation cofactor sensitizes Cryptococcus to nickel and abolishes its ability to rescue the Ni-induced growth defect of sre1Δ. As overexpression of a known nickel-binding protein Ure7 or Erg3 with a metal binding pocket similar to Erg25 does not impact on nickel tolerance, Erg25 does not appear to simply act as a nickel sink. Furthermore, nickel induces more profound and specific transcriptome changes in ergosterol biosynthetic genes compared to hypoxia. We conclude that Ni targets the sterol biosynthesis pathway primarily through Erg25 in fungi. Similar to the observation in C. neoformans, Ni exposure reduces sterols in human A549 lung epithelial cells, indicating that nickel toxicity on sterol biosynthesis is conserved.
镍(Ni)是地球上含量丰富的元素,它对所有形式的生命都可能有毒。与我们对其他金属的了解不同,对于镍过载的生化反应知之甚少。以前在哺乳动物中的研究表明,镍会引起各种生理变化,包括氧化应激、缺氧反应以及癌症进展途径。然而,镍毒性的主要细胞靶标尚不清楚。在这里,我们使用环境真菌新生隐球菌作为模型生物来阐明细胞对外源镍的反应。我们发现镍会导致麦角固醇(真菌相当于哺乳动物胆固醇)和脂质生物合成的改变,并且固醇调节元件结合转录因子 Sre1 是耐受镍所必需的。有趣的是,C-4 甲基固醇氧化酶基因 ERG25 的过表达,而不是我们测试的麦角固醇生物合成途径中的其他基因,会增加野生型和 sre1Δ 突变体的镍耐受性。过表达 ERG25 及其预测的与金属辅因子结合的结合口袋中的突变使隐球菌对镍敏感,并使其丧失挽救 sre1Δ 诱导的生长缺陷的能力。由于过表达已知的具有类似于 Erg25 的金属结合口袋的镍结合蛋白 Ure7 或 Erg3 不会影响镍耐受性,因此 Erg25 似乎并非简单地充当镍汇。此外,与缺氧相比,镍诱导的麦角固醇生物合成基因的转录组变化更深远和更特异。我们得出结论,镍主要通过真菌中的 Erg25 靶向固醇生物合成途径。与在新生隐球菌中的观察结果相似,镍暴露会降低人 A549 肺上皮细胞中的固醇,表明镍对固醇生物合成的毒性是保守的。