Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
Object Research Systems Inc., Montreal, QC H3C 1M4, Canada.
J Struct Biol. 2020 May 1;210(2):107489. doi: 10.1016/j.jsb.2020.107489. Epub 2020 Mar 3.
Mammalian otoconia of the inner ear vestibular apparatus are calcium carbonate-containing mineralized structures critical for maintaining balance and detecting linear acceleration. The mineral phase of otoconia is calcite, which coherently diffracts X-rays much like a single-crystal. Otoconia contain osteopontin (OPN), a mineral-binding protein influencing mineralization processes in bones, teeth and avian eggshells, for example, and in pathologic mineral deposits. Here we describe mineral nanostructure and the distribution of OPN in mouse otoconia. Scanning electron microscopy and atomic force microscopy of intact and cleaved mouse otoconia revealed an internal nanostructure (50 nm). Transmission electron microscopy and electron tomography of focused ion beam-prepared sections of otoconia confirmed this mineral nanostructure, and identified even smaller (10 nm) nanograin dimensions. X-ray diffraction of mature otoconia (8-day-old mice) showed crystallite size in a similar range (73 nm and smaller). Raman and X-ray absorption spectroscopy - both methods being sensitive to the detection of crystalline and amorphous forms in the sample - showed no evidence of amorphous calcium carbonate in these mature otoconia. Scanning and transmission electron microscopy combined with colloidal-gold immunolabeling for OPN revealed that this protein was located at the surface of the otoconia, correlating with a site where surface nanostructure was observed. OPN addition to calcite growing in vitro produced similar surface nanostructure. These findings provide details on the composition and nanostructure of mammalian otoconia, and suggest that while OPN may influence surface rounding and surface nanostructure in otoconia, other incorporated proteins (also possibly including OPN) likely participate in creating internal nanostructure.
哺乳动物内耳前庭器官的耳石是碳酸钙含量丰富的矿化结构,对维持平衡和检测线性加速度至关重要。耳石的矿物相是方解石,它与单晶一样能使 X 射线相干衍射。耳石含有骨桥蛋白(OPN),这种矿物结合蛋白影响骨骼、牙齿和禽类蛋壳等的矿化过程,并影响病理性矿化沉积。本文描述了小鼠耳石的矿物纳米结构和 OPN 分布。对完整和切割的小鼠耳石进行扫描电子显微镜和原子力显微镜观察,发现其内部具有纳米结构(50nm)。对经聚焦离子束制备的耳石切片进行透射电子显微镜和电子断层扫描,证实了这种矿物纳米结构,并确定了更小的(10nm)纳米晶粒尺寸。对成熟耳石(8 日龄小鼠)的 X 射线衍射表明,其晶体尺寸在相似范围内(73nm 及更小)。拉曼和 X 射线吸收光谱——这两种方法都能灵敏地检测样品中的结晶和非晶形式——均未显示这些成熟耳石中有非晶碳酸钙的证据。扫描和透射电子显微镜结合胶体金免疫标记 OPN 显示,该蛋白位于耳石表面,与观察到表面纳米结构的部位相关。OPN 添加到体外生长的方解石中,会产生类似的表面纳米结构。这些发现提供了哺乳动物耳石的组成和纳米结构的详细信息,并表明尽管 OPN 可能影响耳石的表面圆润度和表面纳米结构,但其他包含的蛋白(也可能包括 OPN)可能参与了内部纳米结构的形成。