Suppr超能文献

低腿部顺应性允许在倒立摆模型离地的速度下进行接地跑步。

Low leg compliance permits grounded running at speeds where the inverted pendulum model gets airborne.

机构信息

Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Germany.

Science of Motion, Friedrich-Schiller-University Jena, Germany.

出版信息

J Theor Biol. 2020 Jun 7;494:110227. doi: 10.1016/j.jtbi.2020.110227. Epub 2020 Mar 3.

Abstract

Animals typically switch from grounded (no flight phases) to aerial running at dimensionless speeds u^ < 1. But some birds use grounded running far above u^ = 1, which puzzles biologists because the inverted pendulum becomes airborne at this speed. Here, we combine computer experiments using the spring-mass model with locomotion data from small birds, macaques and humans to understand the relationship between leg function (stiffness, angle of attack), locomotion speed and gait. With our model, we found three-humped ground reaction force profiles for slow grounded running speeds. The minimal single-humped grounded running speed is u^ = 0.4. This speed value roughly coincides with the transition speed from vaulting to bouncing mechanics in bipeds. Maximal grounded running speed in the model is not limited. In experiments, animals changed from grounded to aerial running at dimensionless contact time around 1. Considering these real-world contact times reduces the solution space drastically, but experimental data fit well. The model still predicts maximal grounded running speed  u^ > 1 for low stiffness values used by birds but decreases below u^ = 1 for increasing stiffness. For stiffer legs used in human walking and running, periodic grounded running vanishes. At speeds at which birds and macaques change to aerial running, we found periodic aerial running to intersect grounded running. This could explain why animals can alternate between grounded and aerial running at the same speed and identical leg parameters. Compliant legs enable different gaits and speeds with similar leg parameters, stiff legs require parameter adaptations.

摘要

动物通常从接地(无飞行阶段)切换到空中奔跑,无量纲速度 u^ < 1。但是,一些鸟类在远高于 u^ = 1 的地面上使用接地奔跑,这让生物学家感到困惑,因为倒立摆在此速度下会飞离地面。在这里,我们将使用弹簧质量模型的计算机实验与来自小鸟、猕猴和人类的运动数据相结合,以了解腿部功能(刚度、攻角)、运动速度和步态之间的关系。通过我们的模型,我们发现了三个峰地面反作用力曲线,用于低速接地奔跑速度。最小的单峰接地奔跑速度为 u^ = 0.4。该速度值大致与双足动物从跳跃到弹起力学的过渡速度一致。模型中的最大接地奔跑速度不受限制。在实验中,动物在无量纲接触时间约为 1 时从接地状态转换为空中状态。考虑到这些实际接触时间,解决方案空间大大减少,但实验数据拟合良好。该模型仍然预测鸟类使用的低刚度值的最大接地奔跑速度 u^ > 1,但随着刚度的增加,该速度会降低到 u^ < 1 以下。对于人类行走和跑步中使用的刚性腿部,周期性接地奔跑会消失。在鸟类和猕猴改变为空中奔跑的速度下,我们发现周期性空中奔跑与接地奔跑相交。这可以解释为什么动物可以在相同的速度和相同的腿部参数下交替进行接地和空中奔跑。顺应性腿部可以用类似的腿部参数实现不同的步态和速度,刚性腿部需要适应参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验