Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, LabCom nextBone, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, 49933 Angers, France.
Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM, LabCom nextBone, SFR-4208, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, CHU-Angers, 49933 Angers, France; Service de chirurgie maxillo-faciale, CHU d'Angers, 49933 Angers Cedex, France.
Micron. 2020 Jun;133:102861. doi: 10.1016/j.micron.2020.102861. Epub 2020 Feb 29.
Granules of calcium/phosphate biomaterials are used to fill small bone defects in oral and maxilla-facial surgery. Granules of natural (e.g., trabecular bone, coral) or synthetic biomaterials are provided by industry. Small granules can also form of putty. The 3D geometry of granules creates a macroporosity allowing invasion of vascular and bone cells when pores are larger than 300 μm. We analyzed the 3D-porosity of 11 different stacks of biomaterials: Osteopure®, CopiOs®, Bio-Oss®, TCP Dental HP®, KeraOs®, TCH®, Biocoral®, EthOss® and Nanostim®. For each granular biomaterial, two sizes of granules were analyzed: small and large. Microcomputed tomography (microCT) determined porosity and microarchitectural characteristics of the biomaterials stacks. Computational fluid dynamics (CFD), a simulation method, was used on the stacks of microCT images. Stacks of small granules had a much lower permeation and fluid velocity than large granules and the hydraulic tortuosity was increased. Significant correlations were observed between microarchitecture parameters (porosity, mean pore diameter and specific surface) and fluid dynamic parameters. The two putties were associated with low (or absence of) porosity and permeation study revealed a very low (or absence) of flow rate. Stacks of granules represent 3D scaffolds resembling trabecular bone with an interconnected porous microarchitecture. Small granules create pores less than 300 μm in diameter; this induces a low fluid flow rate. CFD simulates the accessibility of body fluids and progenitor cells and confirms that it is depending on the shape and 3D arrangements of granules within a stack. Large granules must be preferred to putties and small granules.
钙/磷生物材料颗粒用于填充口腔颌面外科的小骨缺损。天然(例如,小梁骨,珊瑚)或合成生物材料的颗粒由工业提供。小颗粒也可以形成腻子。颗粒的 3D 几何形状形成大孔,当孔径大于 300μm 时允许血管和骨细胞侵入。我们分析了 11 种不同堆叠的生物材料的 3D 孔隙率:Osteopure®、CopiOs®、Bio-Oss®、TCP Dental HP®、KeraOs®、TCH®、Biocoral®、EthOss®和Nanostim®。对于每种颗粒状生物材料,分析了两种大小的颗粒:小颗粒和大颗粒。微计算机断层扫描(microCT)确定了生物材料堆叠的孔隙率和微观结构特征。计算流体动力学(CFD),一种模拟方法,用于 microCT 图像的堆叠。小颗粒的堆积物渗透率和流体速度比大颗粒低得多,水力曲折度增加。在微结构参数(孔隙率、平均孔径和比表面积)和流体动力学参数之间观察到显著的相关性。两种腻子与低(或无)孔隙率相关,渗透研究表明渗透率非常低(或无)。颗粒的堆积物代表类似于小梁骨的 3D 支架,具有相互连接的多孔微观结构。小颗粒形成直径小于 300μm 的孔;这会导致低流体流速。CFD 模拟了体液和祖细胞的可及性,并证实这取决于颗粒在堆积物中的形状和 3D 排列。大颗粒必须优于腻子和小颗粒。