Suppr超能文献

乙酰丙酮的大气化学转化机制及其在夜间二次有机气溶胶形成中的意义。

Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation.

机构信息

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

Sci Total Environ. 2020 Jun 10;720:137610. doi: 10.1016/j.scitotenv.2020.137610. Epub 2020 Feb 27.

Abstract

Recently, a high concentration of acetylacetone (AcAc) has been measured in China, and its day-time chemistry with OH reaction has been evaluated. The phenomenon has profound implications in air pollution, human health and climate change. To systematically understand the atmospheric chemistry of AcAc and its role in the atmosphere, the night-time chemistry of AcAc with O and NO radical were investigated in this work in detail using density functional theory. The results show that for O- and NO-initiated atmospheric oxidation reactions of AcAc, the barrier energies of O/NO-addition are found to be much lower than those of H-abstraction, suggesting that O/NO-addition to AcAc is a major contributing pathway in the atmospheric chemical transformation reactions. The total degradation rate constants were calculated to be 2.36 × 10 and 1.92 × 10 cm molecule s for the O- and NO-initiated oxidation of AcAc at 298 K, respectively. The half-life of AcAc+O in some polluted areas (such as, Pearl River Delta and Yangtze River Delta) is close to 3 h under typical tropospheric conditions. Due to its short half-life, the ozonolysis of AcAc plays a more significant role in the night-time hours, leading to fast transformations to form primary ozonides (POZs). A prompt, thermal decomposition of POZs occurred to yield methylglyoxal, acetic acid and Criegee intermediates, which mainly contributed to the formation of secondary organic aerosol (SOA). Subsequently, using the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), a non-negligible concentration of AcAc was measured in the field observation during the night-time in Nanjing, China. The obtained results reveal that the atmospheric oxidation of AcAc can successively contribute to the formation of SOA under polluted environments regardless of the time (day-time or night-time). This is due to its high reactivity to tropospheric oxidant species (such as, O and NO radicals at night-time).

摘要

最近,在中国已经检测到高浓度的乙酰丙酮(AcAc),并对其与 OH 反应的日间化学性质进行了评估。这一现象在空气污染、人类健康和气候变化方面具有深远的意义。为了系统地了解 AcAc 的大气化学及其在大气中的作用,本工作使用密度泛函理论详细研究了 AcAc 与 O 和 NO 自由基在夜间的化学性质。结果表明,对于 O 和 NO 引发的 AcAc 大气氧化反应,O/NO 加成的势垒能明显低于 H 抽提,表明 O/NO 加成是 AcAc 在大气化学转化反应中的主要贡献途径。在 298 K 时,O 和 NO 引发的 AcAc 氧化的总降解速率常数分别计算为 2.36×10 和 1.92×10 cm3 molecule-1 s-1。在典型的对流层条件下,在一些污染地区(如珠江三角洲和长江三角洲),AcAc+O 的半衰期接近 3 h。由于半衰期短,AcAc 的臭氧分解在夜间更能快速转化形成初级过氧乙酰硝酸酯(POZ)。POZ 会迅速热分解生成甲基乙二醛、乙酸和 Criegee 中间体,这些物质主要促成了二次有机气溶胶(SOA)的形成。随后,使用高分辨率飞行时间化学电离质谱(HR-ToF-CIMS),在中国南京的夜间实地观测中检测到了相当浓度的 AcAc。研究结果表明,在污染环境下,无论时间(白天或夜间),AcAc 的大气氧化都可以成功地促成 SOA 的形成。这是因为它与对流层氧化剂(如夜间的 O 和 NO 自由基)具有很高的反应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验