Department of Civil Engineering, National Institute of Technology, Agartala, Tripura, India.
Department of Chemistry, National Institute of Technology, Agartala, Tripura, India.
J Environ Manage. 2020 May 1;261:110235. doi: 10.1016/j.jenvman.2020.110235. Epub 2020 Mar 2.
Pseudomonas aeruginosa bacteria have been used in this study for zirconia nanoparticles synthesis through green technology for adsorption driven bioremediation of tetracycline from wastewater. The characterization of synthesized nano zirconia has been performed by employing dynamic light scattering, field emission-transmission electron microscopy, energy dispersive X-ray, X-ray diffraction, fourier transform infrared spectroscopy, and point of zero charge analysis. The zirconia nanoparticles have shown average particle size ~15 nm, monoclinic and tetragonal crystal structure with 6.41 nm of crystallite size, the presence of elemental zirconium and oxygen, and the occurrence of functional groups like O-Zr-OH, Zr-O-Zr and Zr-O bonds. The zirconia nanoparticles mediated adsorption of tetracycline has been found to be effective at solution pH 6.0 and in a very less contact time 15 min. Strong electrostatic interaction between zwitterionic form of tetracycline and protonated surface of zirconia nanoparticles is the governing adsorption mechanism in this study. The kinetic study has been performed on the basis of the tetracycline adsorption process revealing that the adsorption phenomenon follows pseudo-second order kinetic, further suggesting chemisorption of tetracycline over zirconia nanoparticles. The Langmuir isotherm model has been found to be the best fitted model among the all isotherm models indicating the involvement of monolayer uptake of tetracycline on the surface of zirconia nanoparticles. Moreover, the maximum tetracycline adsorption capacity of zirconia nanoparticles calculated by the Langmuir isotherm model is close to 526.32 mg/g. This finding is quite reasonable to accept that zirconia nanoparticle may be used as an alternative adsorbent to mitigate the tetracycline contamination in wastewater.
本研究采用绿技术,利用铜绿假单胞菌合成氧化锆纳米粒子,用于废水四环素的吸附驱动生物修复。采用动态光散射、场发射传输电子显微镜、能量色散 X 射线、X 射线衍射、傅里叶变换红外光谱和等电点分析对合成的纳米氧化锆进行了表征。氧化锆纳米粒子的平均粒径为~15nm,具有单斜和四方晶体结构,晶粒尺寸为 6.41nm,存在元素锆和氧,以及 O-Zr-OH、Zr-O-Zr 和 Zr-O 键等官能团。研究发现,氧化锆纳米粒子介导的四环素吸附在溶液 pH 6.0 时非常有效,接触时间非常短,仅为 15 分钟。四环素两性离子形式与氧化锆纳米粒子质子化表面之间的强静电相互作用是本研究中主要的吸附机制。在四环素吸附过程的基础上进行了动力学研究,结果表明吸附现象符合拟二级动力学,进一步表明四环素在氧化锆纳米粒子上的化学吸附。Langmuir 等温吸附模型是所有等温吸附模型中拟合度最好的模型,表明四环素在氧化锆纳米粒子表面的单层吸收。此外,Langmuir 等温吸附模型计算得到的氧化锆纳米粒子的最大四环素吸附容量接近 526.32mg/g。这一发现相当合理,可以接受氧化锆纳米粒子可以作为替代吸附剂,以减轻废水中四环素的污染。