Sanehira Yoshitaka, Shibayama Naoyuki, Numata Youhei, Ikegami Masashi, Miyasaka Tsutomu
Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan.
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15175-15182. doi: 10.1021/acsami.9b23485. Epub 2020 Mar 19.
An Nb-doped TiO (Nb-TiO) film comprising a double structure stacked with a bottom compact layer and top mesoporous layers was synthesized by treating a Ti precursor-coated substrate using a one-step low-temperature steam-annealing (SA) method. The SA-based Nb-TiO films possess high crystallinity and conductivity, and that allows better control over the conduction band (CB) of TiO for the electron transport layer (ETL) of the perovskite solar cells by the Nb doping level. Optimization of power conversion efficiency (PCE) for the Nb-TiO-based ETL was combined with the CB level tuning of the mixed-halide perovskite by changing the Br/I ratio. This band offset management enabled to establish the most suitable energy levels between the ETL and the perovskites. This method was applied to reduce the band gap of perovskites to enhance the photocurrent density while maintaining a high open-circuit voltage. As a result, the optimal combination of 5 mol % Nb-TiO ETL and 10 mol % Br in the mixed-halide perovskite exhibited high photovoltaic performance for low-temperature device fabrication, achieving a high-yield PCE of 21.3%.
通过一步低温蒸汽退火(SA)法处理涂覆有钛前驱体的基板,合成了一种包含底部致密层和顶部介孔层堆叠而成的双层结构的铌掺杂二氧化钛(Nb-TiO)薄膜。基于SA法的Nb-TiO薄膜具有高结晶度和导电性,并且通过铌掺杂水平能够更好地控制用于钙钛矿太阳能电池电子传输层(ETL)的二氧化钛导带(CB)。通过改变Br/I比,将基于Nb-TiO的ETL的功率转换效率(PCE)优化与混合卤化物钙钛矿的CB能级调节相结合。这种能带偏移管理能够在ETL和钙钛矿之间建立最合适的能级。该方法用于降低钙钛矿的带隙,以提高光电流密度,同时保持高开路电压。结果,5 mol% Nb-TiO ETL与混合卤化物钙钛矿中10 mol% Br的最佳组合在低温器件制造中表现出高光伏性能,实现了21.3%的高产率PCE。