Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States of America.
ACS Synth Biol. 2020 Mar 20;9(3):494-499. doi: 10.1021/acssynbio.9b00488. Epub 2020 Mar 9.
Tetrahydrobiopterin-dependent hydroxylation of aromatic amino acids is the first step in the biosynthesis of many neuroactive compounds in humans. A fundamental challenge in building these pathways in is the provision of the non-native hydroxylase cofactor, tetrahydrobiopterin. To solve this, we designed a genetic selection that relies on the tyrosine synthesis activity of phenylalanine hydroxylase. Using adaptive laboratory evolution, we demonstrate the use of this selection to discover: (1) a minimum set of heterologous enzymes and a host (T198I) mutation for achieving this type of hydroxylation chemistry in whole cells, (2) functional complementation of tetrahydrobiopterin by indigenous cofactors, and (3) a tryptophan hydroxylase mutation for improving protein abundance. Thus, the goal of having functional aromatic-amino-acid hydroxylation in was achieved through directed metabolic pathway evolution.
四氢生物蝶呤依赖的芳香族氨基酸羟化作用是人体内许多神经活性化合物生物合成的第一步。在 中构建这些途径的一个基本挑战是提供非天然的羟化酶辅助因子四氢生物蝶呤。为了解决这个问题,我们设计了一种遗传选择,依赖于苯丙氨酸羟化酶的酪氨酸合成活性。通过适应性实验室进化,我们证明了这种选择的使用可以发现:(1)一套最小的异源酶和一个宿主 (T198I)突变,以在整个细胞中实现这种类型的羟化化学;(2)通过本土辅助因子实现四氢生物蝶呤的功能互补;(3)色氨酸羟化酶突变可提高蛋白质丰度。因此,通过定向代谢途径进化,在 中实现了功能性芳香族氨基酸羟化作用。