Suppr超能文献

基于分数编码的分子和 DNA 人工神经网络。

Molecular and DNA Artificial Neural Networks via Fractional Coding.

出版信息

IEEE Trans Biomed Circuits Syst. 2020 Jun;14(3):490-503. doi: 10.1109/TBCAS.2020.2979485. Epub 2020 Mar 9.

Abstract

This article considers implementation of artificial neural networks (ANNs) using molecular computing and DNA based on fractional coding. Prior work had addressed molecular two-layer ANNs with binary inputs and arbitrary weights. In prior work using fractional coding, a simple molecular perceptron that computes sigmoid of scaled weighted sum of the inputs was presented where the inputs and the weights lie between [-1,1]. Even for computing the perceptron, the prior approach suffers from two major limitations. First, it cannot compute the sigmoid of the weighted sum, but only the sigmoid of the scaled weighted sum. Second, many machine learning applications require the coefficients to be arbitrarily positive and negative numbers that are not bounded between [-1,1]; such numbers cannot be handled by the prior perceptron using fractional coding. This paper makes four contributions. First molecular perceptrons that can handle arbitrary weights and can compute sigmoid of the weighted sums are presented. Thus, these molecular perceptrons are ideal for regression applications and multi-layer ANNs. A new molecular divider is introduced and is used to compute sigmoid(ax) where . Second, based on fractional coding, a molecular artificial neural network (ANN) with one hidden layer is presented. Third, a trained ANN classifier with one hidden layer from seizure prediction application from electroencephalogram is mapped to molecular reactions and DNA and their performances are presented. Fourth, molecular activation functions for rectified linear unit (ReLU) and softmax are also presented.

摘要

本文考虑使用基于分数编码的分子计算和 DNA 来实现人工神经网络 (ANNs)。之前的工作已经解决了具有二进制输入和任意权重的分子两层神经网络。在之前使用分数编码的工作中,提出了一种简单的分子感知器,用于计算输入的缩放加权和的 sigmoid,其中输入和权重介于 [-1,1] 之间。即使对于计算感知器,先前的方法也存在两个主要限制。首先,它不能计算加权和的 sigmoid,而只能计算缩放加权和的 sigmoid。其次,许多机器学习应用程序需要系数是任意的正负数,而不是[-1,1] 之间的数字;使用分数编码的先前感知器无法处理这些数字。本文做出了四项贡献。首先,提出了可以处理任意权重并可以计算加权和的 sigmoid 的分子感知器。因此,这些分子感知器非常适合回归应用程序和多层神经网络。引入了一种新的分子除法器,用于计算 。其次,基于分数编码,提出了具有一个隐藏层的分子人工神经网络 (ANN)。第三,将来自脑电图的癫痫预测应用中的训练有素的具有一个隐藏层的 ANN 分类器映射到分子反应和 DNA,并展示它们的性能。第四,还提出了用于整流线性单元 (ReLU) 和 softmax 的分子激活函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验