Suppr超能文献

自然语言处理在模拟重症监护临床试验招募中的应用:基于 LeoPARDS 试验的半自动化模拟。

Natural Language Processing for Mimicking Clinical Trial Recruitment in Critical Care: A Semi-Automated Simulation Based on the LeoPARDS Trial.

出版信息

IEEE J Biomed Health Inform. 2020 Oct;24(10):2950-2959. doi: 10.1109/JBHI.2020.2977925. Epub 2020 Mar 9.

Abstract

Clinical trials often fail to recruit an adequate number of appropriate patients. Identifying eligible trial participants is resource-intensive when relying on manual review of clinical notes, particularly in critical care settings where the time window is short. Automated review of electronic health records (EHR) may help, but much of the information is in free text rather than a computable form. We applied natural language processing (NLP) to free text EHR data using the CogStack platform to simulate recruitment into the LeoPARDS study, a clinical trial aiming to reduce organ dysfunction in septic shock. We applied an algorithm to identify eligible patients using a moving 1-hour time window, and compared patients identified by our approach with those actually screened and recruited for the trial, for the time period that data were available. We manually reviewed records of a random sample of patients identified by the algorithm but not screened in the original trial. Our method identified 376 patients, including 34 patients with EHR data available who were actually recruited to LeoPARDS in our centre. The sensitivity of CogStack for identifying patients screened was 90% (95% CI 85%, 93%). Of the 203 patients identified by both manual screening and CogStack, the index date matched in 95 (47%) and CogStack was earlier in 94 (47%). In conclusion, analysis of EHR data using NLP could effectively replicate recruitment in a critical care trial, and identify some eligible patients at an earlier stage, potentially improving trial recruitment if implemented in real time.

摘要

临床试验常常难以招募到足够数量的合适患者。在依赖于手动审查临床记录来确定合格的试验参与者时,这是一项资源密集型工作,尤其是在重症监护环境下,时间窗口很短。对电子健康记录(EHR)进行自动化审查可能会有所帮助,但其中的许多信息都是以自由文本的形式呈现,而不是可计算的形式。我们使用 CogStack 平台应用自然语言处理(NLP)技术来处理 EHR 中的自由文本数据,以模拟 LeoPARDS 研究的招募过程,该研究旨在减少脓毒症性休克患者的器官功能障碍。我们应用一种算法,使用 1 小时的移动时间窗口来识别合格的患者,并将我们的方法识别出的患者与实际筛选和招募到试验中的患者进行比较,比较时间段为数据可用的时间段。我们手动审查了算法识别但未在原始试验中筛选的随机样本患者的记录。我们的方法识别出 376 名患者,其中包括 34 名 EHR 数据可用的患者,这些患者实际被招募到我们中心的 LeoPARDS 研究中。CogStack 用于识别筛选患者的敏感性为 90%(95%置信区间 85%,93%)。在手动筛查和 CogStack 均识别出的 203 名患者中,索引日期匹配的有 95 名(47%),CogStack 更早的有 94 名(47%)。总之,使用 NLP 分析 EHR 数据可以有效地复制重症监护试验的招募过程,并在更早的阶段识别出一些合格的患者,如果在实时实施,可能会提高试验的招募率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验