Suppr超能文献

利用自然语言处理技术识别脑肿瘤患者以进行临床试验:开发与初步评估

Utilising Natural Language Processing to Identify Brain Tumor Patients for Clinical Trials: Development and Initial Evaluation.

作者信息

Booker James, Penn Jack, Noor Kawsar, Dobson Richard J B, Fersht Naomi, Funnell Jonathan P, Hill Ciaran S, Khan Danyal Z, Newall Nicola, Searle Tom, Sinha Siddharth, Thorne Lewis, Williams Simon C, Kosmin Michael, Marcus Hani J

机构信息

Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.

Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.

出版信息

World Neurosurg. 2025 May;197:123907. doi: 10.1016/j.wneu.2025.123907. Epub 2025 Mar 18.

Abstract

BACKGROUND

Identifying patients eligible for clinical trials through eligibility screening is time and resource-intensive. Natural Language Processing (NLP) models may enhance clinical trial screening by extracting data from Electronic Health Records (EHRs).

OBJECTIVE

We aimed to determine whether an NLP model can extract brain tumor diagnoses from outpatient clinic letters and link this with ongoing clinical trials.

METHODS

This retrospective cohort study reviewed outpatient neuro-oncology clinic letters, to detect brain tumor diagnoses. We used an NLP model to perform a Named Entity Recognition + Linking algorithm that identified medical concepts in free text and linked them to a Systematized Nomenclature of Medicine Clinical Terms ontology, which we used to search a clinical trials database. Human annotators reviewed the accuracy of the concepts extracted and the relevance of recommended clinical trials. Search results were shown on a notification dashboard accessible by clinicians and patients on the EHR. We report the model's performance using precision, recall, and F1 scores.

RESULTS

The model recognized 399 concepts across 196 letters with macro-precision = 0.994, macro-recall = 0.964, and macro-F1 = 0.977. Linking the model results with a clinical trials database identified 1417 ongoing clinical trials; of these, 755 were highly relevant to the individual patient, who met the eligibility criteria for trial recruitment.

CONCLUSIONS

NLP can be used effectively to extract brain tumor diagnoses from free-text EHR records with minimal additional training. The extracted concepts can then be linked to ongoing clinical trials. While further analysis is required to assess the impact on clinical outcomes, these findings suggest a potential application for integrating NLP algorithms into clinical care.

摘要

背景

通过资格筛选来确定符合临床试验条件的患者既耗时又耗费资源。自然语言处理(NLP)模型或许可以通过从电子健康记录(EHR)中提取数据来加强临床试验筛选。

目的

我们旨在确定一个NLP模型能否从门诊信件中提取脑肿瘤诊断信息,并将其与正在进行的临床试验相联系。

方法

这项回顾性队列研究对门诊神经肿瘤学诊所信件进行了审查,以检测脑肿瘤诊断情况。我们使用一个NLP模型来执行命名实体识别+链接算法,该算法在自由文本中识别医学概念,并将其与医学临床术语系统命名法本体相链接,我们用该本体来搜索临床试验数据库。人工注释者审查了提取概念的准确性以及推荐临床试验的相关性。搜索结果显示在一个通知仪表板上,临床医生和患者可通过电子健康记录访问该仪表板。我们使用精确率、召回率和F1分数来报告该模型的性能。

结果

该模型在196封信中识别出399个概念,宏观精确率=0.994,宏观召回率=0.964,宏观F1=0.977。将模型结果与临床试验数据库相链接,识别出1417项正在进行的临床试验;其中,755项与个体患者高度相关,该个体患者符合试验招募的资格标准。

结论

NLP可有效地用于从自由文本电子健康记录中提取脑肿瘤诊断信息,且只需极少的额外训练。然后,提取的概念可与正在进行的临床试验相联系。虽然需要进一步分析以评估对临床结果的影响,但这些发现表明将NLP算法整合到临床护理中具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验