Ghosh Dibyendu, Roy Krishnendu, Sarkar K, Devi Pooja, Kumar Praveen
School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
Central Scientific Instruments Organization, Sector-30C, Chandigarh 160030, India.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28792-28800. doi: 10.1021/acsami.0c05591. Epub 2020 Jun 12.
Because of the excellent electronic properties, Si is a well-established semiconducting material for PV technology. However, slow kinetics and a fast corroding nature make Si inefficient for the hydrogen evolution reaction (HER) in photoelectrochemical (PEC) applications. Herein, we demonstrate a multifacet Si nanowire (SiNW) decorated with surface plasmon-enhanced carbon quantum dots (AuCQDs) as efficient, stable, economical, and scalable photocathodes (PCs) for HER. The PEC performance of SiNW_AuCQDs has more than a fourfold efficiency enhancement than the pristine SiNW, which we have attributed to the combined effect of enhanced solar absorption and efficient carrier transport. The optimized PC SiNW_AuCQDs results in the highest photocurrent ∼1.7 mA/cm, an applied bias photon-to-current conversion efficiency of ∼0.8%, and H gas evolution rate of ∼182.93 μmol·h. Furthermore, these SiNW_AuCQDs PCs provide extraordinary stability under continuous operating conditions with 1 sun illumination (100 mW/cm). The process-line compatible fabrication process of these PCs will open a new direction at the wafer-level designing of a heterostructure for large-scale solar-fuel conversion.
由于具有优异的电子特性,硅是光伏技术中一种成熟的半导体材料。然而,缓慢的动力学和快速的腐蚀特性使得硅在光电化学(PEC)应用中的析氢反应(HER)效率低下。在此,我们展示了一种多面硅纳米线(SiNW),其表面装饰有表面等离子体增强的碳量子点(AuCQDs),作为用于HER的高效、稳定、经济且可扩展的光阴极(PC)。SiNW_AuCQDs的PEC性能比原始SiNW提高了四倍多,我们将其归因于增强的太阳能吸收和高效的载流子传输的综合作用。优化后的PC SiNW_AuCQDs产生了最高光电流1.7 mA/cm²,施加偏压下的光子到电流转换效率0.8%,以及氢气析出速率~182.93 μmol·h⁻¹。此外,这些SiNW_AuCQDs光阴极在1个太阳光照(100 mW/cm²)的连续运行条件下具有出色的稳定性。这些光阴极与工艺线兼容的制造工艺将为大规模太阳能燃料转换的异质结构晶圆级设计开辟一个新方向。