Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15823-15829. doi: 10.1021/acsami.9b21131. Epub 2020 Mar 18.
Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, noninvasive strategies and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstrated for delivering functional proteins. In this work, we developed a robust hydrodynamic approach based on gigahertz (GHz) acoustics to achieve rapid and noninvasive cytosolic delivery of biologically active proteins. With this method, GHz-based acoustic devices trigger oscillations through a liquid medium (acoustic streaming), generating shear stress on the cell membrane and inducing transient nanoporation. This mechanical effect enhances membrane permeability and enables cytosolic access to cationic proteins without disturbing their bioactivity. We evaluated the versatility of this approach through the delivery of cationic fluorescent proteins to a range of cell lines, all of which displayed equally efficient delivery speed (≤20 min). Delivery of multiple enzymatically active proteins with functionality related to apoptosis or genetic recombination further demonstrated the relevance of this method.
细胞内递送对于治疗应用至关重要,例如基因组工程和疾病诊断。目前的方法缺乏简单、非侵入性的策略,并且往往受到长孵育时间或高毒性的限制。流体动力学方法提供了小分子的快速和可控递送,但迄今为止尚未证明可用于递送功能蛋白。在这项工作中,我们开发了一种基于千兆赫 (GHz) 声学的强大流体动力学方法,以实现生物活性蛋白的快速和非侵入性胞质递送。使用这种方法,基于 GHz 的声学设备通过液体介质(声流)引发振荡,在细胞膜上产生剪切应力并诱导瞬时纳米孔。这种机械效应增强了膜的通透性,使阳离子蛋白能够进入细胞质,而不会干扰其生物活性。我们通过将阳离子荧光蛋白递送到一系列细胞系来评估这种方法的多功能性,所有细胞系的递送速度都同样高效(≤20 分钟)。递送到具有与细胞凋亡或基因重组相关的功能的多种酶活性蛋白进一步证明了这种方法的相关性。