Suppr超能文献

通过可调谐千兆赫兹声波实现细胞溶质内功能性蛋白质的输送

Cytosolic Delivery of Functional Proteins through Tunable Gigahertz Acoustics.

机构信息

Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.

State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15823-15829. doi: 10.1021/acsami.9b21131. Epub 2020 Mar 18.

Abstract

Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, noninvasive strategies and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstrated for delivering functional proteins. In this work, we developed a robust hydrodynamic approach based on gigahertz (GHz) acoustics to achieve rapid and noninvasive cytosolic delivery of biologically active proteins. With this method, GHz-based acoustic devices trigger oscillations through a liquid medium (acoustic streaming), generating shear stress on the cell membrane and inducing transient nanoporation. This mechanical effect enhances membrane permeability and enables cytosolic access to cationic proteins without disturbing their bioactivity. We evaluated the versatility of this approach through the delivery of cationic fluorescent proteins to a range of cell lines, all of which displayed equally efficient delivery speed (≤20 min). Delivery of multiple enzymatically active proteins with functionality related to apoptosis or genetic recombination further demonstrated the relevance of this method.

摘要

细胞内递送对于治疗应用至关重要,例如基因组工程和疾病诊断。目前的方法缺乏简单、非侵入性的策略,并且往往受到长孵育时间或高毒性的限制。流体动力学方法提供了小分子的快速和可控递送,但迄今为止尚未证明可用于递送功能蛋白。在这项工作中,我们开发了一种基于千兆赫 (GHz) 声学的强大流体动力学方法,以实现生物活性蛋白的快速和非侵入性胞质递送。使用这种方法,基于 GHz 的声学设备通过液体介质(声流)引发振荡,在细胞膜上产生剪切应力并诱导瞬时纳米孔。这种机械效应增强了膜的通透性,使阳离子蛋白能够进入细胞质,而不会干扰其生物活性。我们通过将阳离子荧光蛋白递送到一系列细胞系来评估这种方法的多功能性,所有细胞系的递送速度都同样高效(≤20 分钟)。递送到具有与细胞凋亡或基因重组相关的功能的多种酶活性蛋白进一步证明了这种方法的相关性。

相似文献

1
Cytosolic Delivery of Functional Proteins through Tunable Gigahertz Acoustics.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15823-15829. doi: 10.1021/acsami.9b21131. Epub 2020 Mar 18.
2
A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming.
Nanoscale. 2022 Oct 27;14(41):15281-15290. doi: 10.1039/d2nr03222h.
3
Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics.
Angew Chem Int Ed Engl. 2019 Jan 2;58(1):159-163. doi: 10.1002/anie.201810181. Epub 2018 Nov 30.
4
General Strategy for Direct Cytosolic Protein Delivery via Protein-Nanoparticle Co-engineering.
ACS Nano. 2017 Jun 27;11(6):6416-6421. doi: 10.1021/acsnano.7b02884. Epub 2017 Jun 15.
5
Polymers for cytosolic protein delivery.
Biomaterials. 2019 Oct;218:119358. doi: 10.1016/j.biomaterials.2019.119358. Epub 2019 Jul 15.
6
Regulating Biomolecular Surface Interactions Using Tunable Acoustic Streaming.
ACS Sens. 2023 Sep 22;8(9):3458-3467. doi: 10.1021/acssensors.3c00982. Epub 2023 Aug 28.
7
Acoustic Controllable Spatiotemporal Cell Micro-oscillation for Noninvasive Intracellular Drug Delivery.
Anal Chem. 2024 Sep 17;96(37):14998-15007. doi: 10.1021/acs.analchem.4c03187. Epub 2024 Sep 6.
8
Programmable In Vitro Coencapsidation of Guest Proteins for Intracellular Delivery by Virus-like Particles.
ACS Nano. 2018 May 22;12(5):4615-4623. doi: 10.1021/acsnano.8b01059. Epub 2018 May 3.
9
Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture.
J Am Chem Soc. 2021 Mar 31;143(12):4758-4765. doi: 10.1021/jacs.1c00258. Epub 2021 Mar 11.
10
On-chip rapid drug screening of leukemia cells by acoustic streaming.
Lab Chip. 2021 Oct 12;21(20):4005-4015. doi: 10.1039/d1lc00684c.

引用本文的文献

1
Scalable acoustic virtual stirrer for enhanced interfacial enzymatic nucleic acid reactions.
Sci Adv. 2025 Mar 7;11(10):eadt6955. doi: 10.1126/sciadv.adt6955. Epub 2025 Mar 5.
2
A Miniaturized Wireless Micropump Enabled by Confined Acoustic Streaming.
Research (Wash D C). 2024 Feb 26;7:0314. doi: 10.34133/research.0314. eCollection 2024.
3
Recent progress in nanomedicine-mediated cytosolic delivery.
RSC Adv. 2023 Mar 28;13(15):9788-9799. doi: 10.1039/d2ra07111h. eCollection 2023 Mar 27.
4
Sonoporation: Past, Present, and Future.
Adv Mater Technol. 2022 Jan;7(1). doi: 10.1002/admt.202100885. Epub 2021 Sep 14.
5
Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus.
Bioconjug Chem. 2021 May 19;32(5):891-896. doi: 10.1021/acs.bioconjchem.1c00103. Epub 2021 Apr 19.
6
Hypersound-Assisted Size Sorting of Microparticles on Inkjet-Patterned Protein Films.
Langmuir. 2021 Mar 2;37(8):2826-2832. doi: 10.1021/acs.langmuir.0c03598. Epub 2021 Feb 12.
7
Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery.
Trends Pharmacol Sci. 2020 Oct;41(10):743-754. doi: 10.1016/j.tips.2020.08.005. Epub 2020 Sep 2.

本文引用的文献

2
Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers.
Theranostics. 2019 May 18;9(11):3280-3292. doi: 10.7150/thno.34412. eCollection 2019.
3
Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):19734-19742. doi: 10.1021/acsami.9b02447. Epub 2019 May 23.
5
Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7899-7904. doi: 10.1073/pnas.1818553116. Epub 2019 Mar 28.
6
Cytosolic Delivery of Proteins Using Amphiphilic Polymers with 2-Pyridinecarboxaldehyde Groups for Site-Selective Attachment.
J Am Chem Soc. 2019 Feb 13;141(6):2376-2383. doi: 10.1021/jacs.8b10947. Epub 2019 Feb 5.
7
Charge-Selective Delivery of Proteins Using Mesoporous Silica Nanoparticles Fused with Lipid Bilayers.
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):3645-3653. doi: 10.1021/acsami.8b15390. Epub 2019 Jan 16.
8
Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics.
Angew Chem Int Ed Engl. 2019 Jan 2;58(1):159-163. doi: 10.1002/anie.201810181. Epub 2018 Nov 30.
9
Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.
J Am Chem Soc. 2018 Jun 6;140(22):6780-6784. doi: 10.1021/jacs.8b03442. Epub 2018 May 24.
10
Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator.
Nano Lett. 2018 Apr 11;18(4):2705-2710. doi: 10.1021/acs.nanolett.8b00704. Epub 2018 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验