Suppr超能文献

利用原位纳米晶成核和快速晶体生长制备富含卤素的超离子锂-硫银锗矿

Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth.

作者信息

Jung Wo Dum, Kim Ji-Su, Choi Sungjun, Kim Seongmin, Jeon Minjae, Jung Hun-Gi, Chung Kyung Yoon, Lee Jong-Ho, Kim Byung-Kook, Lee Jong-Heun, Kim Hyoungchul

机构信息

Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Nano Lett. 2020 Apr 8;20(4):2303-2309. doi: 10.1021/acs.nanolett.9b04597. Epub 2020 Mar 9.

Abstract

Although several crystalline materials have been developed as Li-ion conductors for use as solid electrolytes in all-solid-state batteries (ASSBs), producing materials with high Li-ion conductivities is time-consuming and cost-intensive. Herein, we introduce a superionic halogen-rich Li-argyrodite (HRLA) and demonstrate its innovative synthesis using ultimate-energy mechanical alloying (UMA) and rapid thermal annealing (RTA). UMA with a 49 G-force milling energy provides a one-pot process that includes mixing, glassification, and crystallization, to produce as-milled HRLA powder that is ∼70% crystallized; subsequent RTA using an infrared lamp increases this crystallinity to ∼82% within 25 min. Surprisingly, this HRLA exhibits the highest Li-ion conductivity among Li-argyrodites (10.2 mS cm at 25 °C, cold-pressed powder compact) reported so far. Furthermore, we confirm that this superionic HRLA works well as a promising solid electrolyte without a decreased intrinsic electrochemical window in various electrode configurations and delivers impressive cell performance (114.2 mAh g at 0.5 C).

摘要

尽管已经开发出几种晶体材料作为锂离子导体,用于全固态电池(ASSB)中的固体电解质,但生产具有高锂离子电导率的材料既耗时又成本高昂。在此,我们介绍一种富含超离子卤素的锂硫银锗矿(HRLA),并展示其使用极限能量机械合金化(UMA)和快速热退火(RTA)的创新合成方法。具有49 G力研磨能量的UMA提供了一种一锅法工艺,包括混合、玻璃化和结晶,以生产结晶度约为70%的研磨态HRLA粉末;随后使用红外灯进行的RTA在25分钟内将该结晶度提高到约82%。令人惊讶的是,这种HRLA在迄今为止报道的锂硫银锗矿中表现出最高的锂离子电导率(25℃时为10.2 mS/cm,冷压粉末压块)。此外,我们证实,这种超离子HRLA作为一种有前景的固体电解质,在各种电极配置中均能良好工作,且不会降低其固有电化学窗口,并能提供令人印象深刻的电池性能(0.5 C时为114.2 mAh/g)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验