Suppr超能文献

一种平衡自动化和人工干预的建模工作流程,用于在多个空间尺度上为入侵植物管理决策提供信息。

A modeling workflow that balances automation and human intervention to inform invasive plant management decisions at multiple spatial scales.

机构信息

Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, United States of America.

U.S. Geological Survey Fort Collins Science Center, Fort Collins, Colorado, United States of America.

出版信息

PLoS One. 2020 Mar 9;15(3):e0229253. doi: 10.1371/journal.pone.0229253. eCollection 2020.

Abstract

Predictions of habitat suitability for invasive plant species can guide risk assessments at regional and national scales and inform early detection and rapid-response strategies at local scales. We present a general approach to invasive species modeling and mapping that meets objectives at multiple scales. Our methodology is designed to balance trade-offs between developing highly customized models for few species versus fitting non-specific and generic models for numerous species. We developed a national library of environmental variables known to physiologically limit plant distributions and relied on human input based on natural history knowledge to further narrow the variable set for each species before developing habitat suitability models. To ensure efficiency, we used largely automated modeling approaches and human input only at key junctures. We explore and present uncertainty by using two alternative sources of background samples, including five statistical algorithms, and constructing model ensembles. We demonstrate the use and efficiency of the Software for Assisted Habitat Modeling [SAHM 2.1.2], a package in VisTrails, which performs the majority of the modeling analyses. Our workflow includes solicitation of expert feedback on model outputs such as spatial prediction results and variable response curves, and iterative improvement based on new data availability and directed field validation of initial model results. We highlight the utility of the models for decision-making at regional and local scales with case studies of two plant species that invade natural areas: fountain grass (Pennisetum setaceum) and goutweed (Aegopodium podagraria). By balancing model automation with human intervention, we can efficiently provide land managers with mapped predicted distributions for multiple invasive species to inform decisions across spatial scales.

摘要

预测入侵植物物种的栖息地适宜性可以指导区域和国家尺度的风险评估,并为地方尺度的早期检测和快速响应策略提供信息。我们提出了一种通用的入侵物种建模和制图方法,以满足多个尺度的目标。我们的方法旨在平衡为少数物种开发高度定制模型与为众多物种拟合非特定和通用模型之间的权衡。我们开发了一个包含已知限制植物分布的生理环境变量的国家图书馆,并依靠基于自然历史知识的人为输入,在为每个物种开发栖息地适宜性模型之前,进一步缩小变量集。为了确保效率,我们主要使用自动化建模方法,仅在关键节点使用人为输入。我们通过使用两种替代背景样本来源(包括五个统计算法)和构建模型集合来探索和呈现不确定性。我们展示了使用和效率的软件辅助栖息地建模[SAHM 2.1.2],这是 VisTrails 中的一个软件包,它执行了大部分建模分析。我们的工作流程包括征求专家对模型输出的反馈,例如空间预测结果和变量响应曲线,以及基于新数据可用性和对初始模型结果的定向现场验证进行迭代改进。我们通过对入侵自然区域的两种植物物种(喷泉草和鹅不食草)的案例研究,强调了模型在区域和地方尺度上决策的实用性。通过平衡模型自动化与人的干预,我们可以为土地管理者提供多种入侵物种的映射预测分布,以便在不同空间尺度上做出决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a63/7062246/10ce5ca6aced/pone.0229253.g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验