Le Gal Jean-Patrick, Colnot Eloïse, Cardoit Laura, Bacqué-Cazenave Julien, Thoby-Brisson Muriel, Juvin Laurent, Morin Didier
Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Université de Bordeaux, Bordeaux, France.
Eur J Neurosci. 2020 Aug;52(4):3181-3195. doi: 10.1111/ejn.14717. Epub 2020 Mar 25.
Early at the onset of exercise, breathing rate accelerates in order to anticipate the increasing metabolic demand resulting from the extra effort produced. Accordingly, the respiratory neural networks are the target of various input signals originating either centrally or peripherally. For example, during locomotion, the activation of muscle sensory afferents is able to entrain and thereby increase the frequency of spontaneous respiratory rhythmogenesis. Moreover, the lumbar spinal networks engaged in generating hindlimb locomotor rhythms are also capable of activating the medullary respiratory generators through an ascending excitatory command. However, in the context of quadrupedal locomotion, the influence of other spinal cord regions, such as cervical and thoracic segments, remains unknown. Using isolated brainstem-spinal cord preparations from neonatal rats and mice, we show that cervicothoracic circuitry may also contribute to locomotion-induced acceleration of respiratory cycle frequency. As previously observed for the hindlimb CPGs, the pharmacological activation of forelimb locomotor networks produces episodes of fictive locomotion that in turn increase the ongoing respiratory rhythm. Thoracic neuronal circuitry may also participate indirectly in this modulation via the activation of both cervical and lumbar CPG neurons. Furthermore, using light stimulation of CHR2-expressing glutamatergic neurons, we found that the modulation of the respiratory rate during locomotion involves lumbar glutamatergic circuitry. Our results demonstrate that during locomotion, the respiratory rhythm-generating networks receive excitatory ascending inputs from the spinal circuits responsible for generating and coordinating fore- and hindlimb movements. This constitutes a distributed central mechanism that contributes to matching breathing rate to the speed of locomotion.
在运动开始初期,呼吸频率会加快,以应对因额外用力而增加的代谢需求。因此,呼吸神经网络是来自中枢或外周的各种输入信号的目标。例如,在运动过程中,肌肉感觉传入神经的激活能够带动并因此增加自发呼吸节律产生的频率。此外,参与产生后肢运动节律的腰脊髓网络也能够通过上行兴奋性指令激活延髓呼吸发生器。然而,在四足动物运动的背景下,其他脊髓区域(如颈段和胸段)的影响仍然未知。利用新生大鼠和小鼠的离体脑干-脊髓标本,我们发现颈胸回路也可能有助于运动诱导的呼吸周期频率加快。正如之前在后肢中枢模式发生器中观察到的那样,前肢运动网络的药理学激活会产生虚构运动发作,进而增加正在进行的呼吸节律。胸段神经元回路也可能通过激活颈段和腰段中枢模式发生器神经元间接参与这种调节。此外,通过对表达CHR2的谷氨酸能神经元进行光刺激,我们发现运动过程中呼吸频率的调节涉及腰段谷氨酸能回路。我们的结果表明,在运动过程中,呼吸节律产生网络从负责产生和协调前肢和后肢运动的脊髓回路接收兴奋性上行输入。这构成了一种分布式中枢机制,有助于使呼吸频率与运动速度相匹配。