Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
Champalimaud Research, Champalimaud Foundation, 1400-038, Lisbon, Portugal.
Nat Commun. 2023 May 22;14(1):2939. doi: 10.1038/s41467-023-38583-6.
While respiratory adaptation to exercise is compulsory to cope with the increased metabolic demand, the neural signals at stake remain poorly identified. Using neural circuit tracing and activity interference strategies in mice, we uncover here two systems by which the central locomotor network can enable respiratory augmentation in relation to running activity. One originates in the mesencephalic locomotor region (MLR), a conserved locomotor controller. Through direct projections onto the neurons of the preBötzinger complex that generate the inspiratory rhythm, the MLR can trigger a moderate increase of respiratory frequency, prior to, or even in the absence of, locomotion. The other is the lumbar enlargement of the spinal cord containing the hindlimb motor circuits. When activated, and through projections onto the retrotrapezoid nucleus (RTN), it also potently upregulates breathing rate. On top of identifying critical underpinnings for respiratory hyperpnea, these data also expand the functional implication of cell types and pathways that are typically regarded as "locomotor" or "respiratory" related.
虽然呼吸对运动的适应是应对代谢需求增加的强制性要求,但所涉及的神经信号仍未得到充分识别。在这里,我们使用在小鼠中进行的神经回路追踪和活动干扰策略,揭示了中枢运动网络能够使呼吸与跑步活动相关的两种系统。一种起源于中脑运动区(MLR),这是一个保守的运动控制器。通过直接投射到产生吸气节律的 PreBötzinger 复合体神经元上,MLR 可以在运动之前或甚至在没有运动的情况下引发呼吸频率的适度增加。另一个是脊髓的腰膨大,其中包含下肢运动回路。当被激活时,它通过投射到延髓网状核(RTN)上,也能强烈地上调呼吸频率。除了确定呼吸过度通气的关键基础外,这些数据还扩展了通常被认为与“运动”或“呼吸”相关的细胞类型和途径的功能意义。