Suppr超能文献

海胆刺细胞微观结构的定量 3D 结构分析(二):大容量结构分析。

Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis.

机构信息

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA.

Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA.

出版信息

Acta Biomater. 2020 Apr 15;107:218-231. doi: 10.1016/j.actbio.2020.03.006. Epub 2020 Mar 7.

Abstract

Biological cellular materials have been a valuable source of inspiration for the design of lightweight engineering structures. In this process, a quantitative understanding of the biological cellular materials from the individual branch and node level to the global network level in 3D is required. Here we adopt a multiscale cellular network analysis workflow demonstrated in the first paper of this work series to analyze the biomineralized porous structure of sea urchin spines from the species Heterocentrotus mamillatus over a large volume (ca. 0.32mm). A comprehensive set of structural descriptors is utilized to quantitatively delineate the long-range microstructural variation from the spine center to the edge region. Our analysis shows that the branches gradually elongate (50% increase) and thicken (100% increase) from the spine center to edge, which dictates the spatial variation of relative density (from ~12% to ~40%). The branch morphology and network organization patterns also vary gradually with their positions and orientations. Additionally, the analysis of the cellular network of individual septa provides the interconnection characteristics between adjacent septa, which are the primary structural motifs used for the construction of the cellular structure in the edge region. Lastly, combining the extracted long-range cellular network and finite element simulations allows us to efficiently examine the spatial and orientational dependence of local effective Young's modulus across the spine's radius. The structural-mechanical analysis here sheds light on the structural designs of H. mamillatus' porous spines, which could provide important insights for the design and modeling of lightweight yet strong and damage-tolerant cellular materials. STATEMENT OF SIGNIFICANCE: Previous investigations on the cellular structures of sea urchin spines have been mainly based on 2D measurements or 3D quantification of small volumes with limited structural parameters. This limits our understanding of the interplay between the 3D microstructural variations and the mechanical properties in sea urchin spines, which hence constrains the derivation of the underlying principles for bio-inspired designs. This work utilizes our multiscale 3D network analysis, for the first time, to quantify the 3D cellular network and its variation across large volumes in sea urchin spines from individual branch and node level to the cellular network level. The network analysis demonstrated here is expected to be of great interest to the fields of biomineralization, functional biological materials, and bio-inspired material design.

摘要

生物细胞材料一直是设计轻质工程结构的宝贵灵感来源。在这个过程中,需要从个体分支和节点水平到三维全局网络水平对生物细胞材料进行定量理解。在这里,我们采用了在本系列第一篇论文中展示的多尺度细胞网络分析工作流程,来分析来自棘皮动物物种 H. mamillatus 的生物矿化多孔刺的结构,其体积较大(约 0.32mm)。我们利用一整套结构描述符来定量描绘从刺的中心到边缘区域的长程微观结构变化。我们的分析表明,分支从刺的中心到边缘逐渐伸长(增加约 50%)和变粗(增加约 100%),这决定了相对密度的空间变化(从约 12%到约 40%)。分支形态和网络组织模式也随着它们的位置和方向逐渐变化。此外,对单个隔板的细胞网络的分析提供了相邻隔板之间的连接特征,这些特征是构建边缘区域细胞结构的主要结构图案。最后,结合提取的长程细胞网络和有限元模拟,使我们能够有效地检查局部有效杨氏模量在刺半径上的空间和方向依赖性。这里的结构力学分析揭示了 H. mamillatus 多孔刺的结构设计,这为轻质但强韧和抗损伤的细胞材料的设计和建模提供了重要的见解。

意义

以前对海胆刺细胞结构的研究主要基于 2D 测量或对有限结构参数的小体积的 3D 量化。这限制了我们对海胆刺中 3D 微观结构变化与力学性能之间相互作用的理解,从而限制了对生物启发设计的基本原理的推导。这项工作首次利用我们的多尺度 3D 网络分析,从个体分支和节点水平到细胞网络水平,对海胆刺中的 3D 细胞网络及其在大体积中的变化进行量化。这里展示的网络分析预计将引起生物矿化、功能生物材料和生物启发材料设计领域的极大兴趣。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验