Suppr超能文献

O-GlcNAcylation 对 SIRT1 功能的时空门控对于肝脏代谢转换至关重要,并可预防高血糖。

Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia.

机构信息

Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005 Maharashtra, India.

Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 Maharashtra, India.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6890-6900. doi: 10.1073/pnas.1909943117. Epub 2020 Mar 9.

Abstract

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.

摘要

已知低效的生理转变会导致代谢紊乱。因此,研究构成中央代谢器官(如肝脏)分子开关的机制变得至关重要。具体来说,控制转录因子的时间参与的上游机制对于介导生理进食-禁食-再进食转变至关重要,但目前对此了解较少。SIRT1 是一种 NAD 依赖性去乙酰化酶,在调节肝脏基因表达方面起着关键作用,并且已成为一个重要的治疗靶点。尽管如此,营养输入如何调节 SIRT1 的相互作用、稳定性以及因此的下游功能仍然未知。在这里,我们确定 SIRT1 的 N 端结构域中的营养依赖性 O-GlcNAc 化是肝脏功能的关键决定因素。我们的研究结果表明,在禁食到再进食的转变过程中,SIRT1 的糖基化调节其与各种转录因子和参与胰岛素信号传导的核细胞质激酶的相互作用。此外,在进食状态下持续的糖基化导致 SIRT1 的核排斥和细胞质泛素介导的降解。这种机制通过构成一个以前未知的分子中继来对 SIRT1 功能进行时空控制。值得注意的是,SIRT1 糖基化的缺失破坏了这些相互作用,导致异常的基因表达、线粒体功能障碍和增强的肝糖异生。肝脏中表达非糖基化的 SIRT1 会破坏代谢灵活性,导致全身胰岛素抵抗、高血糖和肝炎症,突出了与其过度激活相关的生理代价。相反,我们的研究还表明,SIRT1 的高糖基化与衰老和高脂肪诱导的肥胖有关。因此,我们确定 SIRT1 的营养依赖性糖基化对于其功能的门控和维持生理适应性是必不可少的。

相似文献

1
Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6890-6900. doi: 10.1073/pnas.1909943117. Epub 2020 Mar 9.
2
Loss of Hepatic Oscillatory Fed microRNAs Abrogates Refed Transition and Causes Liver Dysfunctions.
Cell Rep. 2019 Feb 19;26(8):2212-2226.e7. doi: 10.1016/j.celrep.2019.01.087.
3
Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21.
Gastroenterology. 2014 Feb;146(2):539-49.e7. doi: 10.1053/j.gastro.2013.10.059. Epub 2013 Nov 1.
4
Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice.
Am J Physiol Endocrinol Metab. 2012 Nov 15;303(10):E1234-44. doi: 10.1152/ajpendo.00198.2012. Epub 2012 Sep 11.
6
O-GlcNAcylated p53 in the liver modulates hepatic glucose production.
Nat Commun. 2021 Aug 20;12(1):5068. doi: 10.1038/s41467-021-25390-0.
8
Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production.
Pharmacol Res. 2018 Oct;136:62-73. doi: 10.1016/j.phrs.2018.08.018. Epub 2018 Aug 23.
9
10
FoxO6 integrates insulin signaling with gluconeogenesis in the liver.
Diabetes. 2011 Nov;60(11):2763-74. doi: 10.2337/db11-0548. Epub 2011 Sep 22.

引用本文的文献

1
Involvement of SIRT1-mediated aging in liver diseases.
Front Cell Dev Biol. 2025 Feb 20;13:1548015. doi: 10.3389/fcell.2025.1548015. eCollection 2025.
2
Identification of ABHD6 as a lysophosphatidylserine lipase in the mammalian liver and kidneys.
J Biol Chem. 2025 Feb;301(2):108157. doi: 10.1016/j.jbc.2025.108157. Epub 2025 Jan 4.
3
TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver.
EMBO Rep. 2025 Feb;26(3):791-809. doi: 10.1038/s44319-024-00348-7. Epub 2025 Jan 2.
4
Post-Translational Modifications and Diabetes.
Biomolecules. 2024 Mar 6;14(3):310. doi: 10.3390/biom14030310.
6
SIRT1 ISGylation accelerates tumor progression by unleashing SIRT1 from the inactive state to promote its deacetylase activity.
Exp Mol Med. 2024 Mar;56(3):656-673. doi: 10.1038/s12276-024-01194-2. Epub 2024 Mar 5.
7
Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs.
Life Sci Alliance. 2024 Feb 26;7(5). doi: 10.26508/lsa.202302180. Print 2024 May.
8
O-GlcNAcylation: cellular physiology and therapeutic target for human diseases.
MedComm (2020). 2023 Dec 19;4(6):e456. doi: 10.1002/mco2.456. eCollection 2023 Dec.
9
O-GlcNAcylation: the sweet side of epigenetics.
Epigenetics Chromatin. 2023 Dec 14;16(1):49. doi: 10.1186/s13072-023-00523-5.
10
Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies.
iScience. 2023 Jun 15;26(7):107128. doi: 10.1016/j.isci.2023.107128. eCollection 2023 Jul 21.

本文引用的文献

1
Loss of Hepatic Oscillatory Fed microRNAs Abrogates Refed Transition and Causes Liver Dysfunctions.
Cell Rep. 2019 Feb 19;26(8):2212-2226.e7. doi: 10.1016/j.celrep.2019.01.087.
2
Fasting Imparts a Switch to Alternative Daily Pathways in Liver and Muscle.
Cell Rep. 2018 Dec 18;25(12):3299-3314.e6. doi: 10.1016/j.celrep.2018.11.077.
3
Functions and mechanisms of non-histone protein acetylation.
Nat Rev Mol Cell Biol. 2019 Mar;20(3):156-174. doi: 10.1038/s41580-018-0081-3.
4
An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity.
Mol Cell. 2018 Dec 20;72(6):985-998.e7. doi: 10.1016/j.molcel.2018.10.007. Epub 2018 Nov 8.
5
Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock.
Cell Metab. 2019 Feb 5;29(2):303-319.e4. doi: 10.1016/j.cmet.2018.08.004. Epub 2018 Aug 30.
6
Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases.
Trends Pharmacol Sci. 2018 Sep;39(9):812-827. doi: 10.1016/j.tips.2018.07.003. Epub 2018 Jul 27.
7
O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress.
Nat Commun. 2017 Nov 14;8(1):1491. doi: 10.1038/s41467-017-01654-6.
8
Emerging roles of SIRT1 in fatty liver diseases.
Int J Biol Sci. 2017 Jul 6;13(7):852-867. doi: 10.7150/ijbs.19370. eCollection 2017.
9
Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7255-E7261. doi: 10.1073/pnas.1620529114. Epub 2017 Aug 14.
10
Regulation of hepatic glucose metabolism in health and disease.
Nat Rev Endocrinol. 2017 Oct;13(10):572-587. doi: 10.1038/nrendo.2017.80. Epub 2017 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验