Suppr超能文献

荧光报告基因等位交换诱变介导的基因缺失表明沙眼衣原体 TarP 在感染性期间的必需性,并揭示了 C 末端在细胞入侵过程中的特定作用。

Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion.

机构信息

Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.

出版信息

Infect Immun. 2020 Apr 20;88(5). doi: 10.1128/IAI.00841-19.

Abstract

The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes , we speculated as to what degree Tarp function contributes to 's ability to parasitize mammalian host cells. To address this question, we generated a complete deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in with wild-type or mutant alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type entry into HeLa cells resulted in host cell shape changes, whereas the mutant did not. Finally, using a novel complementation approach, lacking demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide virulence factor.

摘要

易位肌动蛋白募集磷蛋白 (Tarp) 是一种多结构域 III 型分泌效应物,被 综合现有数据表明,该效应物在引发新感染方面发挥作用。随着新的遗传工具开始出现用于研究衣原体基因,我们推测 Tarp 功能在多大程度上有助于 寄生哺乳动物宿主细胞的能力。为了解决这个问题,我们使用荧光报告等位基因交换诱变 (FRAEM) 技术生成了一个完整的缺失突变体,并在 中用野生型 或突变型 等位基因进行了互补,这些等位基因被设计为具有框内结构域缺失。我们提供了 Tarp 在 入侵宿主细胞中的重要作用的证据。互补研究表明,C 末端丝状肌动蛋白 (F-actin)-结合结构域负责 Tarp 介导的入侵效率。野生型 进入 HeLa 细胞导致宿主细胞形状发生变化,而 突变体则没有。最后,使用一种新的 互补方法,缺乏 在小鼠生殖道感染模型中表现出显著的衰减。这些数据共同为 Tarp F-actin 结合结构域在宿主细胞入侵中的关键作用以及 Tarp 效应物作为真正的 毒力因子提供了明确的遗传证据。

相似文献

3
Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
Front Cell Infect Microbiol. 2016 Aug 23;6:84. doi: 10.3389/fcimb.2016.00084. eCollection 2016.
4
Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector.
Biochem Biophys Res Commun. 2018 Jun 2;500(2):423-428. doi: 10.1016/j.bbrc.2018.04.093. Epub 2018 Apr 17.
5
The Early Effector Tarp Outcompetes Fascin in Forming F-Actin Bundles .
Front Cell Infect Microbiol. 2022 Mar 1;12:811407. doi: 10.3389/fcimb.2022.811407. eCollection 2022.
7
The conserved Tarp actin binding domain is important for chlamydial invasion.
PLoS Pathog. 2010 Jul 15;6(7):e1000997. doi: 10.1371/journal.ppat.1000997.
8
The Chlamydia trachomatis Tarp effector targets the Hippo pathway.
Biochem Biophys Res Commun. 2021 Jul 12;562:133-138. doi: 10.1016/j.bbrc.2021.05.057. Epub 2021 May 27.
9
Chlamydial TARP is a bacterial nucleator of actin.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15599-604. doi: 10.1073/pnas.0603044103. Epub 2006 Oct 6.
10
Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.
J Bacteriol. 2013 Feb;195(4):708-16. doi: 10.1128/JB.01768-12. Epub 2012 Nov 30.

引用本文的文献

1
Pathogenicity and virulence of : Insights into host interactions, immune evasion, and intracellular survival.
Virulence. 2025 Dec;16(1):2503423. doi: 10.1080/21505594.2025.2503423. Epub 2025 May 15.
2
The secreted effector protein CT181 binds to Mcl-1 to prolong neutrophil survival.
bioRxiv. 2025 Mar 16:2025.03.16.643443. doi: 10.1101/2025.03.16.643443.
3
Chlamydia trachomatis invasion: a duet of effectors.
Biochem Soc Trans. 2025 Mar 24;0(0):BST20240800. doi: 10.1042/BST20240800.
4
The N-terminus of the effector Tarp engages the host Hippo pathway.
Microbiol Spectr. 2025 Apr;13(4):e0259624. doi: 10.1128/spectrum.02596-24. Epub 2025 Mar 10.
5
: a model for intracellular bacterial parasitism.
J Bacteriol. 2025 Mar 20;207(3):e0036124. doi: 10.1128/jb.00361-24. Epub 2025 Feb 20.
6
Overexpressing the ClpC AAA+ unfoldase accelerates developmental cycle progression in .
mBio. 2025 Jan 8;16(1):e0287024. doi: 10.1128/mbio.02870-24. Epub 2024 Nov 22.
8
The N-terminus of the effector Tarp engages the host Hippo pathway.
bioRxiv. 2024 Sep 12:2024.09.12.612603. doi: 10.1101/2024.09.12.612603.

本文引用的文献

1
Biophysical characterization of actin bundles generated by the Chlamydia trachomatis Tarp effector.
Biochem Biophys Res Commun. 2018 Jun 2;500(2):423-428. doi: 10.1016/j.bbrc.2018.04.093. Epub 2018 Apr 17.
4
Chlamydia trachomatis Transformation and Allelic Exchange Mutagenesis.
Curr Protoc Microbiol. 2017 May 16;45:11A.3.1-11A.3.15. doi: 10.1002/cpmc.31.
5
Genital Infections.
Microb Cell. 2016 Sep 5;3(9):390-403. doi: 10.15698/mic2016.09.525.
6
Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors.
Front Cell Infect Microbiol. 2016 Aug 23;6:84. doi: 10.3389/fcimb.2016.00084. eCollection 2016.
7
8
Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events.
PLoS One. 2016 Jan 5;11(1):e0146663. doi: 10.1371/journal.pone.0146663. eCollection 2016.
9
A working model for the type III secretion mechanism in Chlamydia.
Microbes Infect. 2016 Feb;18(2):84-92. doi: 10.1016/j.micinf.2015.10.006. Epub 2015 Oct 26.
10
Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract.
Pathog Dis. 2014 Oct;72(1):70-3. doi: 10.1111/2049-632X.12164. Epub 2014 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验