Suppr超能文献

新生儿癫痫的脑电图。

Electroencephalography in neonatal epilepsies.

机构信息

Department of Pediatrics, Aichi Medical University, Aichi, Japan.

出版信息

Pediatr Int. 2020 Sep;62(9):1019-1028. doi: 10.1111/ped.14227.

Abstract

Neonatal epilepsies - neonatal seizures caused by remote symptomatic etiologies - are infrequent compared with those caused by acute symptomatic etiologies. The etiologies of neonatal epilepsies are classified into structural, genetic, and metabolic. Electroencephalography (EEG) and amplitude-integrated EEG (aEEG) are essential for the diagnosis and monitoring of neonatal epilepsies. Electroencephalography / aEEG findings may differ substantially among infants, even within infants with variants in a single gene. Unusual EEG/aEEG findings, such as downward seizure patterns on aEEG, can be found. Neonatal seizures are exclusively of focal onset. An International League Against Epilepsy task force proposed that the seizure type is typically determined by the predominant clinical feature and is classified into motor or non-motor presentations. Ictal EEG usually demonstrates a sudden, repetitive, evolving, and stereotyped activities with a minimum duration of 10 s. In epileptic spasms and myoclonic seizures, the cut-off point of 10 s cannot be applied. One must always be aware of electro-clinical dissociation in neonates suspected to have seizures. Amplitude-integrated EEG is also useful for the diagnosis and monitoring of neonatal epilepsies but aEEG cannot be recommended as the mainstay because of its relatively low sensitivity and specificity. At present, EEG findings are not pathognomonic, although some characteristic ictal or interictal EEG findings have been reported in several neonatal epilepsies. Deep learning will be expected to be introduced into EEG interpretation in near future. Objective EEG classification derived from deep learning may help to clarify EEG characteristics in some specific cases of neonatal epilepsy.

摘要

新生儿癫痫-由远程症状性病因引起的新生儿发作-与由急性症状性病因引起的发作相比不常见。新生儿癫痫的病因可分为结构性、遗传性和代谢性。脑电图 (EEG) 和振幅整合脑电图 (aEEG) 是诊断和监测新生儿癫痫的重要手段。即使在单个基因突变的婴儿中,EEG/aEEG 发现也可能有很大差异。可能会发现异常的 EEG/aEEG 发现,例如 aEEG 上的向下发作模式。新生儿发作完全是局灶性发作。国际抗癫痫联盟工作组提出,发作类型通常由主要临床特征决定,并分为运动性或非运动性表现。癫痫发作时的 EEG 通常表现为突发、重复、演变和刻板的活动,持续时间至少为 10 秒。在癫痫痉挛和肌阵挛发作中,不能应用 10 秒的截止点。对于怀疑有癫痫发作的新生儿,必须始终注意电临床分离。振幅整合脑电图也可用于新生儿癫痫的诊断和监测,但由于其敏感性和特异性相对较低,不推荐将 aEEG 作为主要手段。目前,脑电图发现没有特征性,但在几种新生儿癫痫中已经报道了一些特征性的发作期或发作间期脑电图发现。深度学习有望在不久的将来引入 EEG 解释。来自深度学习的客观 EEG 分类可能有助于阐明一些特定新生儿癫痫病例的 EEG 特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验