Boateng Bismark, Han Yupei, Zhen Cheng, Zeng Guangfeng, Chen Ning, Chen Dongjiang, Feng Chao, Han Jiecai, Xiong Jie, Duan Xiangfeng, He Weidong
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
Nano Lett. 2020 Apr 8;20(4):2594-2601. doi: 10.1021/acs.nanolett.0c00074. Epub 2020 Mar 13.
Lithium metal represents an ultimate anode material of lithium batteries for its high energy density. However, its large negative redox potential and reactive nature can trigger electrolyte decomposition and dendrite formation, causing unstable cycling and short circuit of batteries. Herein, we engineer a resilient solid electrolyte interphase on the Li anode by compositing the battery separator with organosulfur compounds and inorganic salts from garlic. These compounds take part in battery reactions to suppress dendrite growth through reversible electrochemistry and attenuate ionic concentration gradient. When the Li anode and the separator are paired with the LiFePO cathode, one obtains a battery delivering long-term cycling stability of 3000 cycles, a rate capacity of 100 mAh g at 10 C (2.5 mA cm), a Coulombic efficiency of 99.9%, and a low battery polarization. Additionally, with high-loading 20 mg cm LiFePO cathodes, an areal capacity of 3.4 mAh cm is achieved at 0.3 C (1 mA cm).
锂金属因其高能量密度而成为锂电池的终极负极材料。然而,其较大的负氧化还原电位和活泼的性质会引发电解质分解和枝晶形成,导致电池循环不稳定和短路。在此,我们通过将电池隔膜与来自大蒜的有机硫化合物和无机盐复合,在锂负极上构建了一种弹性固体电解质界面。这些化合物参与电池反应,通过可逆电化学抑制枝晶生长,并减弱离子浓度梯度。当锂负极和隔膜与磷酸铁锂正极配对时,可得到一个电池,其具有3000次循环的长期循环稳定性、在10 C(2.5 mA cm)下100 mAh g的倍率容量、99.9%的库仑效率以及低电池极化。此外,使用高负载20 mg cm的磷酸铁锂正极,在0.3 C(1 mA cm)下可实现3.4 mAh cm的面积容量。