Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States; Joint BioEnergy Institute, Emeryville, CA, United States.
Joint BioEnergy Institute, Emeryville, CA, United States; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States.
Curr Opin Biotechnol. 2020 Oct;65:88-93. doi: 10.1016/j.copbio.2020.02.001. Epub 2020 Mar 8.
Terpenoids are a vast and diverse class of molecules with industrial and medicinal importance. The majority of these molecules are produced across kingdom Plantae via specialized metabolism. Microorganisms, mainly Escherichia coli and Saccharomyces cerevisiae, have become choice platforms for the biosynthesis of terpenoids due to recent advances in synthetic biology and metabolic engineering. New techniques for gene discovery have expanded our search space for novel terpene synthesis pathways and unlocked unrealized potential for the microbial production of more complex derivatives. Additionally, numerous advances in host and pathway engineering have allowed for the production of terpenoids requiring oxidation and glycosylation, effectively expanding the potential target space. These advances will lay the foundation for the microbial biosynthesis of a seemingly infinite domain of terpenoids with varying applications.
萜类化合物是一类庞大而多样的分子,具有工业和医学重要性。这些分子中的大多数是通过植物界的特殊代谢产生的。由于合成生物学和代谢工程的最新进展,微生物,主要是大肠杆菌和酿酒酵母,已成为萜类化合物生物合成的首选平台。基因发现新技术扩大了我们对新型萜类化合物合成途径的搜索空间,并为微生物生产更复杂的衍生物释放了未实现的潜力。此外,宿主和途径工程的许多进步使得需要氧化和糖基化的萜类化合物的生产成为可能,有效地扩大了潜在的目标空间。这些进展将为微生物生物合成具有各种应用的萜类化合物的无限领域奠定基础。