Suppr超能文献

用于持续众包数据收集的自适应室内区域定位

Adaptive Indoor Area Localization for Perpetual Crowdsourced Data Collection.

作者信息

Laska Marius, Blankenbach Jörg, Klamma Ralf

机构信息

Geodetic Institute and Chair for Computing in Civil Engineering & Geo Information Systems, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany.

Advanced Community Information Systems Group (ACIS), RWTH Aachen University, Lehrstuhl Informatik 5, Ahornstr. 55, 52074 Aachen, Germany.

出版信息

Sensors (Basel). 2020 Mar 6;20(5):1443. doi: 10.3390/s20051443.

Abstract

The accuracy of fingerprinting-based indoor localization correlates with the quality and up-to-dateness of collected training data. Perpetual crowdsourced data collection reduces manual labeling effort and provides a fresh data base. However, the decentralized collection comes with the cost of heterogeneous data that causes performance degradation. In settings with imperfect data, area localization can provide higher positioning guarantees than exact position estimation. Existing area localization solutions employ a static segmentation into areas that is independent of the available training data. This approach is not applicable for crowdsoucred data collection, which features an unbalanced spatial training data distribution that evolves over time. A segmentation is required that utilizes the existing training data distribution and adapts once new data is accumulated. We propose an algorithm for data-aware floor plan segmentation and a selection metric that balances expressiveness (information gain) and performance (correctly classified examples) of area classifiers. We utilize supervised machine learning, in particular, deep learning, to train the area classifiers. We demonstrate how to regularly provide an area localization model that adapts its prediction space to the accumulating training data. The resulting models are shown to provide higher reliability compared to models that pinpoint the exact position.

摘要

基于指纹识别的室内定位精度与所收集训练数据的质量和时效性相关。持续的众包数据收集减少了人工标注工作,并提供了一个新的数据库。然而,分散式收集伴随着异构数据的成本,这会导致性能下降。在数据不完美的情况下,区域定位比精确位置估计能提供更高的定位保证。现有的区域定位解决方案采用与可用训练数据无关的静态区域分割。这种方法不适用于众包数据收集,因为众包数据收集的特点是空间训练数据分布不均衡且随时间变化。需要一种能利用现有训练数据分布并在新数据积累时进行自适应调整的分割方法。我们提出了一种用于数据感知的平面图分割算法以及一种选择度量,该度量平衡了区域分类器的表现力(信息增益)和性能(正确分类的示例)。我们利用监督式机器学习,特别是深度学习,来训练区域分类器。我们展示了如何定期提供一个区域定位模型,该模型能使其预测空间适应不断积累的训练数据。结果表明,与精确确定位置的模型相比,所得到的模型具有更高的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e52/7085741/ad3d2c0164c2/sensors-20-01443-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验