Suppr超能文献

李-佛美尼氏症探索联合协会数据协调中心:为罕见病症的合作性国际癌症流行病学研究构建一个互动式网络资源。

Li-Fraumeni Exploration Consortium Data Coordinating Center: Building an Interactive Web-Based Resource for Collaborative International Cancer Epidemiology Research for a Rare Condition.

机构信息

Center for Medical Genetics and Genomics, University of Pittsburgh, Pittsburgh, Pennsylvania.

City of Hope National Medical Center, Duarte, California.

出版信息

Cancer Epidemiol Biomarkers Prev. 2020 May;29(5):927-935. doi: 10.1158/1055-9965.EPI-19-1113. Epub 2020 Mar 10.

Abstract

BACKGROUND

The success of multisite collaborative research relies on effective data collection, harmonization, and aggregation strategies. Data Coordination Centers (DCC) serve to facilitate the implementation of these strategies. The utility of a DCC can be particularly relevant for research on rare diseases where collaboration from multiple sites to amass large aggregate datasets is essential. However, approaches to building a DCC have been scarcely documented.

METHODS

The Li-Fraumeni Exploration (LiFE) Consortium's DCC was created using multiple open source packages, including LAM/G Application (Linux, Apache, MySQL, Grails), Extraction-Transformation-Loading (ETL) Pentaho Data Integration Tool, and the Saiku-Mondrian client. This document serves as a resource for building a rare disease DCC for multi-institutional collaborative research.

RESULTS

The primary scientific and technological objective to create an online central repository into which data from all participating sites could be deposited, harmonized, aggregated, disseminated, and analyzed was completed. The cohort now include 2,193 participants from six contributing sites, including 1,354 individuals from families with a pathogenic or likely variant in . Data on cancer diagnoses are also available. Challenges and lessons learned are summarized.

CONCLUSIONS

The methods leveraged mitigate challenges associated with successfully developing a DCC's technical infrastructure, data harmonization efforts, communications, and software development and applications.

IMPACT

These methods can serve as a framework in establishing other collaborative research efforts. Data from the consortium will serve as a great resource for collaborative research to improve knowledge on, and the ability to care for, individuals and families with Li-Fraumeni syndrome.

摘要

背景

多中心合作研究的成功依赖于有效的数据收集、协调和聚合策略。数据协调中心(DCC)有助于实施这些策略。DCC 的实用性对于罕见病研究尤为重要,因为需要从多个站点合作汇集大型聚合数据集。然而,建立 DCC 的方法几乎没有被记录下来。

方法

Li-Fraumeni 探索(LiFE)联盟的 DCC 使用了多个开源软件包,包括 LAM/G 应用程序(Linux、Apache、MySQL、Grails)、提取-转换-加载(ETL)Pentaho 数据集成工具和 Saiku-Mondrian 客户端。本文档为建立用于多机构合作研究的罕见病 DCC 提供了资源。

结果

创建一个在线中央存储库,将所有参与站点的数据存入其中,进行协调、聚合、传播和分析的主要科学和技术目标已经完成。该队列现在包括来自六个合作站点的 2193 名参与者,其中 1354 名来自携带致病性或可能变异的家族。癌症诊断数据也可用。总结了挑战和经验教训。

结论

所利用的方法减轻了成功开发 DCC 的技术基础设施、数据协调工作、通信以及软件开发和应用相关的挑战。

影响

这些方法可以作为建立其他合作研究的框架。该联盟的数据将成为合作研究的宝贵资源,以提高对 Li-Fraumeni 综合征患者和家庭的认识,并提高治疗能力。

相似文献

本文引用的文献

3
Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers.重新审视携 TP53 突变者的李-佛美尼综合征。
J Clin Oncol. 2015 Jul 20;33(21):2345-52. doi: 10.1200/JCO.2014.59.5728. Epub 2015 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验