Suppr超能文献

β-拉帕醌增强氟康唑对 Pdr5p 介导的耐药酿酒酵母菌株的抗真菌活性。

β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain.

机构信息

Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil.

Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil.

出版信息

Braz J Microbiol. 2020 Sep;51(3):1051-1060. doi: 10.1007/s42770-020-00254-9. Epub 2020 Mar 10.

Abstract

OBJECTIVES

The aim of this study was to evaluate the ability of lapachones in disrupting the fungal multidrug resistance (MDR) phenotype, using a model of study which an azole-resistant Saccharomyces cerevisiae mutant strain that overexpresses the ATP-binding cassette (ABC) transporter Pdr5p.

METHODS

The evaluation of the antifungal activity of lapachones and their possible synergism with fluconazole against the mutant S. cerevisiae strain was performed through broth microdilution and spot assays. Reactive oxygen species (ROS) and efflux pump activity were assessed by fluorometry. ATPase activity was evaluated by the Fiske and Subbarow method. The effect of β-lapachone on PDR5 mRNA expression was assessed by RT-PCR. The release of hemoglobin was measured to evaluate the hemolytic activity of β-lapachone.

RESULTS

α-nor-Lapachone and β-lapachone inhibited S. cerevisiae growth at 100 μg/ml. Only β-lapachone enhanced the antifungal activity of fluconazole, and this combined action was inhibited by ascorbic acid. β-Lapachone induced the production of ROS, inhibited Pdr5p-mediated efflux, and impaired Pdr5p ATPase activity. Also, β-lapachone neither affected the expression of PDR5 nor exerted hemolytic activity.

CONCLUSIONS

Data obtained indicate that β-lapachone is able to inhibit the S. cerevisiae efflux pump Pdr5p. Since this transporter is homologous to fungal ABC transporters, further studies employing clinical isolates that overexpress these proteins will be conducted to evaluate the effect of β-lapachone on pathogenic fungi.

摘要

目的

本研究旨在评估拉帕醌破坏真菌多药耐药(MDR)表型的能力,使用一种研究模型,该模型是一种唑类耐药的酿酒酵母突变株,该突变株过度表达三磷酸腺苷(ATP)结合盒(ABC)转运蛋白 Pdr5p。

方法

通过肉汤微量稀释和点试验评估拉帕醌及其与氟康唑对突变 S. cerevisiae 菌株的抗真菌活性及其可能的协同作用。通过荧光法评估活性氧(ROS)和外排泵活性。通过 Fiske 和 Subbarow 法评估 ATP 酶活性。通过 RT-PCR 评估 β-拉帕醌对 PDR5 mRNA 表达的影响。通过测量血红蛋白释放来评估 β-拉帕酮的溶血活性。

结果

α-正拉帕醌和β-拉帕醌在 100μg/ml 时抑制 S. cerevisiae 生长。只有 β-拉帕醌增强了氟康唑的抗真菌活性,这种联合作用被抗坏血酸抑制。β-拉帕酮诱导 ROS 的产生,抑制 Pdr5p 介导的外排,并损害 Pdr5p ATP 酶活性。此外,β-拉帕酮既不影响 PDR5 的表达,也不发挥溶血活性。

结论

获得的数据表明,β-拉帕醌能够抑制 S. cerevisiae 外排泵 Pdr5p。由于该转运蛋白与真菌 ABC 转运蛋白同源,因此将进一步进行使用过度表达这些蛋白的临床分离株的研究,以评估 β-拉帕酮对致病性真菌的影响。

相似文献

1
β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain.
Braz J Microbiol. 2020 Sep;51(3):1051-1060. doi: 10.1007/s42770-020-00254-9. Epub 2020 Mar 10.
2
Histatin-5 induces the reversal of Pdr5p mediated fluconazole resistance in Saccharomyces cerevisae.
J Mycol Med. 2018 Mar;28(1):137-142. doi: 10.1016/j.mycmed.2017.11.002. Epub 2017 Dec 6.
4
Synergistic interactions between β-lapachone and fluconazole in the inhibition of CaCdr2p and CaMdr1p in Candida albicans.
Rev Iberoam Micol. 2020 Jul-Oct;37(3-4):104-106. doi: 10.1016/j.riam.2020.09.002. Epub 2020 Nov 20.
5
Curcumin potentiates the fungicidal effect of dodecanol by inhibiting drug efflux in wild-type budding yeast.
Lett Appl Microbiol. 2019 Jan;68(1):17-23. doi: 10.1111/lam.13083. Epub 2018 Nov 19.
6
Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative.
Antimicrob Agents Chemother. 2004 Apr;48(4):1256-71. doi: 10.1128/AAC.48.4.1256-1271.2004.
7
Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p.
FEMS Yeast Res. 2010 May;10(3):244-51. doi: 10.1111/j.1567-1364.2010.00603.x. Epub 2010 Feb 1.
8
Effects of β-lapachone and β-nor-lapachone on multidrug efflux transporters and biofilms of Candida glabrata.
Bioorg Med Chem. 2022 Jun 1;63:116749. doi: 10.1016/j.bmc.2022.116749. Epub 2022 Apr 14.

引用本文的文献

本文引用的文献

1
Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen .
Front Cell Infect Microbiol. 2019 Apr 2;9:83. doi: 10.3389/fcimb.2019.00083. eCollection 2019.
3
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research?
Drug Resist Updat. 2019 Jan;42:22-34. doi: 10.1016/j.drup.2019.02.002. Epub 2019 Feb 15.
5
Fungal Resistance to Echinocandins and the MDR Phenomenon in .
J Fungi (Basel). 2018 Sep 1;4(3):105. doi: 10.3390/jof4030105.
6
Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism.
PLoS One. 2018 Aug 29;13(8):e0203079. doi: 10.1371/journal.pone.0203079. eCollection 2018.
7
Treatment of Invasive Candidiasis: A Narrative Review.
J Fungi (Basel). 2018 Aug 16;4(3):97. doi: 10.3390/jof4030097.
8
Host-Pathogen Interactions Mediated by MDR Transporters in Fungi: As Pleiotropic as it Gets!
Genes (Basel). 2018 Jul 2;9(7):332. doi: 10.3390/genes9070332.
9
Lawsone, Juglone, and β-Lapachone Derivatives with Enhanced Mitochondrial-Based Toxicity.
ACS Chem Biol. 2018 Aug 17;13(8):1950-1957. doi: 10.1021/acschembio.8b00306. Epub 2018 Jun 15.
10
β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors.
J Mycol Med. 2018 Jun;28(2):314-319. doi: 10.1016/j.mycmed.2018.03.004. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验