Pan Hui, Lin Jingyi, Han Xiaoyu, Li Yao, Meng Xin, Luo Ruichun, Broughton Joseph James, Imtiaz Muhammad, Chen Zhixin, Wang Dawei, Zhu Shenmin, Liu Pan, Guo Zhengxiao
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Department of Chemistry, University College London, London WC1H 0AJ, UK.
Nanoscale. 2020 Mar 19;12(11):6562-6570. doi: 10.1039/d0nr00487a.
As a new type of 2D material, 1T'-MoS2 has become one of the fastest growing topics, owing to its extraordinary electrical conductivity and electrochemical activity. Nevertheless, these marvelous properties have not yet been realized in their macroscopic structures such as films and fibers, due to the lack of an assembly method. Herein, we report the synthesis of well-soluble 1T'-MoS2 sheets, which can form a nematic liquid crystalline structure in their aqueous suspensions. The liquid crystalline suspensions were then assembled into macroscopic 1T'-MoS2 fibers via a simple and cost-effective dry-spinning process. A similar process can be used for the preparation of 1T'-MoS2/graphene oxide (1T'-MoS2/GO) fibers from 1T'-MoS2/GO 2D/2D composite liquid crystals. The fabricated 1T'-MoS2/GO fibers exhibited an excellent electrical conductivity of 1.5 × 104 S m-1 as well as a high tensile strength of 145 MPa. When used as an electrode, the fibers showed an extremely high capacitance of 1379.8 F cm-3 (∼645 F g-1) at a scan rate of 10 mV s-1 by using K3[Fe(CN)6]/K4[Fe(CN)6] as the electrolyte. Our findings will open up an avenue for liquid crystal physics of low dimensional non-carbon materials beyond graphene, and stimulate a wide range of application explorations, especially on energy storage.
作为一种新型二维材料,1T'-二硫化钼因其非凡的导电性和电化学活性,已成为发展最为迅速的研究热点之一。然而,由于缺乏组装方法,这些优异性能尚未在薄膜和纤维等宏观结构中得以实现。在此,我们报道了可良好溶解的1T'-二硫化钼片层的合成,其在水悬浮液中能形成向列型液晶结构。然后,通过简单且经济高效的干纺工艺,将液晶悬浮液组装成宏观的1T'-二硫化钼纤维。类似的工艺可用于由1T'-二硫化钼/氧化石墨烯(1T'-MoS2/GO)二维/二维复合液晶制备1T'-二硫化钼/氧化石墨烯(1T'-MoS2/GO)纤维。所制备的1T'-二硫化钼/氧化石墨烯纤维表现出1.5×104 S m-1的优异电导率以及145 MPa的高拉伸强度。当用作电极时,以铁氰化钾/亚铁氰化钾作为电解质,在扫描速率为10 mV s-1的条件下,该纤维显示出1379.8 F cm-3(约645 F g-1)的极高电容。我们的研究结果将为超越石墨烯的低维非碳材料的液晶物理开辟一条道路,并激发广泛的应用探索,尤其是在能量存储方面。