Suppr超能文献

[改良SEGA衰弱评分在老年患者住院末期的预测能力:一项为期6个月的前瞻性研究]

[Predictive capacities at the end of hospitalisation in geriatrics of the modified SEGA frailty score: a 6-month prospective study].

作者信息

Leblanc Camille, Godaert Lidvine, Dramé Moustapha, Bujoreanu Paul, Collart Michèle, Hurtaud Aline, Novella Jean-Luc, Sanchez Stéphane

机构信息

Médecine générale, Piney, France.

Pôle de gériatrie et de gérontologie, CHU de Martinique, Fort-de-France, France.

出版信息

Geriatr Psychol Neuropsychiatr Vieil. 2020 Mar 1;18(1):34-42. doi: 10.1684/pnv.2019.0827.

Abstract

UNLABELLED

The aim of this study was to describe the predictive role of the modified SEGA fragility score on nursing home admission, rehospitalization, falls and mortality.

MATERIAL AND METHODS

We performed a prospective, single-center cohort study in patients leaving geriatric hospitalization between July 2016 and February 2017, with follow-up at 6 months. Patients 65 years of age and over, returning home, were included. The primary outcome measure was admission to an institution at 6 months. We realized a Cox model to explore the predictive character of the variables.

RESULTS

Thirty-three patients (18.4%), mean age 80.9 years (± 6.5), were not very fragile. At 6 months, 13.5% of the fragile or very fragile patients and 1.2% of the patients who were not very fragile had entered the institution (p = 0.169). Fragility status was statistically significantly associated with rehospitalization at 3 months (p = 0.026) and single or multiple drop at 6 months) month (p = 0.003).

CONCLUSION

The SEGAm grid would predict the occurrence of derogatory events and improve return home.

摘要

未标注

本研究旨在描述改良的SEGA脆弱性评分在养老院入住、再次住院、跌倒和死亡率方面的预测作用。

材料与方法

我们对2016年7月至2017年2月间老年住院出院患者进行了一项前瞻性单中心队列研究,并进行了6个月的随访。纳入65岁及以上回家的患者。主要结局指标是6个月时入住机构情况。我们构建了Cox模型以探索变量的预测特征。

结果

33例患者(18.4%),平均年龄80.9岁(±6.5),脆弱性较低。6个月时,脆弱或非常脆弱的患者中有13.5%进入机构,而脆弱性较低的患者中有1.2%进入机构(p = 0.169)。脆弱性状态与3个月时再次住院(p = 0.026)以及6个月时单次或多次跌倒(p = 0.003)在统计学上显著相关。

结论

SEGAm网格可预测不良事件的发生并改善回家情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验