Department of Cardiology III - Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany
Department of Cardiology III - Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany.
Heart. 2020 Jul;106(13):1007-1014. doi: 10.1136/heartjnl-2019-315962. Epub 2020 Mar 11.
To assess the utility of machine learning algorithms for automatically estimating prognosis in patients with repaired tetralogy of Fallot (ToF) using cardiac magnetic resonance (CMR).
We included 372 patients with ToF who had undergone CMR imaging as part of a nationwide prospective study. Cine loops were retrieved and subjected to automatic deep learning (DL)-based image analysis, trained on independent, local CMR data, to derive measures of cardiac dimensions and function. This information was combined with established clinical parameters and ECG markers of prognosis.
Over a median follow-up period of 10 years, 23 patients experienced an endpoint of death/aborted cardiac arrest or documented ventricular tachycardia (defined as >3 documented consecutive ventricular beats). On univariate Cox analysis, various DL parameters, including right atrial median area (HR 1.11/cm², p=0.003) and right ventricular long-axis strain (HR 0.80/%, p=0.009) emerged as significant predictors of outcome. DL parameters were related to adverse outcome independently of left and right ventricular ejection fraction and peak oxygen uptake (p<0.05 for all). A composite score of enlarged right atrial area and depressed right ventricular longitudinal function identified a ToF subgroup at significantly increased risk of adverse outcome (HR 2.1/unit, p=0.007).
We present data on the utility of machine learning algorithms trained on external imaging datasets to automatically estimate prognosis in patients with ToF. Due to the automated analysis process these two-dimensional-based algorithms may serve as surrogates for labour-intensive manually attained imaging parameters in patients with ToF.
评估机器学习算法在使用心脏磁共振(CMR)评估修复后的法洛四联症(ToF)患者预后中的效用。
我们纳入了 372 例接受 CMR 成像的 ToF 患者,这些患者是一项全国性前瞻性研究的一部分。检索电影环并进行基于自动深度学习(DL)的图像分析,该分析基于独立的本地 CMR 数据进行训练,以得出心脏尺寸和功能的测量值。将这些信息与既定的临床参数和 ECG 预后标志物相结合。
在中位数为 10 年的随访期间,23 例患者发生了死亡/心搏骤停或记录的室性心动过速的终点事件(定义为>3 次连续记录的室性搏动)。在单变量 Cox 分析中,各种 DL 参数,包括右心房中位数面积(HR 1.11/cm²,p=0.003)和右心室长轴应变(HR 0.80/%,p=0.009),均为结局的显著预测指标。DL 参数与不良结局相关,与左、右心室射血分数和峰值摄氧量无关(p<0.05)。扩大的右心房面积和压抑的右心室纵向功能的综合评分确定了 ToF 亚组,其不良结局风险显著增加(HR 2.1/单位,p=0.007)。
我们提供了使用外部成像数据集训练的机器学习算法自动评估 ToF 患者预后的效用数据。由于分析过程是自动化的,这些二维算法可以作为劳力密集型手动获得的 ToF 患者成像参数的替代指标。