Suppr超能文献

肺腺癌纯磨玻璃结节的影像组学分析:侵袭性预测。

Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.

机构信息

Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.

Diagnosis and Treatment Center of Small Lung Nodules, Huadong Hospital, Shanghai, China.

出版信息

Eur Radiol. 2020 Jul;30(7):3650-3659. doi: 10.1007/s00330-020-06776-y. Epub 2020 Mar 11.

Abstract

OBJECTIVES

To investigate the value of radiomics based on CT imaging in predicting invasive adenocarcinoma manifesting as pure ground-glass nodules (pGGNs).

METHODS

This study enrolled 395 pGGNs with histopathology-confirmed benign nodules or adenocarcinoma. A total of 396 radiomic features were extracted from each labeled nodule. A Rad-score was constructed with the least absolute shrinkage and selection operator (LASSO) in the training set. Multivariate logistic regression analysis was conducted to establish the radiographic model and the combined radiographic-radiomics model. The predictive performance was validated by receiver operating characteristic (ROC) curve. Based on the multivariate logistic regression analysis, an individual prediction nomogram was developed and the clinical utility was assessed.

RESULTS

Five radiomic features and four radiographic features were selected for predicting the invasive lesions. The combined radiographic-radiomics model (AUC 0.77; 95% CI, 0.69-0.86) performed better than the radiographic model (AUC 0.71; 95% CI, 0.62-0.81) and Rad-score (AUC 0.72; 95% CI, 0.63-0.81) in the validation set. The clinical utility of the individualized prediction nomogram developed using the Rad-score, margin, spiculation, and size was confirmed in the validation set. The decision curve analysis (DCA) indicated that using a model with Rad-score to predict the invasive lesion would be more beneficial than that without Rad-score and the clinical model.

CONCLUSIONS

The proposed radiomics-based nomogram that incorporated the Rad-score, margin, spiculation, and size may be utilized as a noninvasive biomarker for the assessment of invasive prediction in patients with pGGNs.

KEY POINTS

• CT-based radiomics analysis helps invasive prediction manifested as pGGNs. • The combined radiographic-radiomics model may be utilized as a noninvasive biomarker for predicting invasive lesion for pGGNs. • Radiomics-based individual nomogram may serve as a vital decision support tool to identify invasive pGGNs, obviating further workup and blind follow-up.

摘要

目的

研究基于 CT 成像的放射组学在预测表现为纯磨玻璃结节(pGGN)的浸润性腺癌中的价值。

方法

本研究纳入了 395 例经组织病理学证实为良性结节或腺癌的 pGGN 患者。从每个标记的结节中提取了 396 个放射组学特征。在训练集中,使用最小绝对收缩和选择算子(LASSO)构建 Rad-score。通过多变量逻辑回归分析建立影像学模型和联合影像学-放射组学模型。通过接收者操作特征(ROC)曲线验证预测性能。基于多变量逻辑回归分析,开发了个体预测列线图,并评估了其临床实用性。

结果

选择了 5 个放射组学特征和 4 个影像学特征来预测浸润性病变。联合影像学-放射组学模型(AUC 为 0.77;95%CI,0.69-0.86)在验证集中的表现优于影像学模型(AUC 为 0.71;95%CI,0.62-0.81)和 Rad-score(AUC 为 0.72;95%CI,0.63-0.81)。在验证集中,使用 Rad-score、边缘、分叶和大小开发的个体化预测列线图的临床实用性得到了证实。决策曲线分析(DCA)表明,使用具有 Rad-score 的模型预测浸润性病变比不使用 Rad-score 和临床模型更有益。

结论

纳入 Rad-score、边缘、分叶和大小的基于放射组学的列线图可作为评估 pGGN 患者浸润性预测的非侵入性生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b40/7305264/1b3443162237/330_2020_6776_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验